
Tao B. Schardl
MIT Stata Center, 32-G766
32 Vassar Street
Cambridge, MA 02139 USA

neboat@mit.edu
http://neboat.mit.edu/

Updated November 14, 2024

Short biography
Tao B. (TB) Schardl is a Research Scientist in the Computer Science and Artificial Intelligence Laboratory
(CSAIL) at MIT and Chief Architect of the OpenCilk task-parallel programming platform. His research
aims to make software performance engineering a viable replacement for Moore’s Law. To this end, his
research integrates algorithms with systems and spans the areas of parallel programming models, theories
of software performance, compilers, runtime systems, diagnostic tools, parallel algorithms, and the future
of computer performance. He received the US Department of the Air Force Artificial Intelligence Acceler-
ator Scientific Excellence Award in 2022 for his work on OpenCilk. His work on the Tapir/LLVM compiler
received the best paper award at the ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP) in 2017. His work on computer performance in the post-Moore’s Law erawas published
in Science and has been spotlighted in two Turing-award lectures. Dr. Schardl received his S.B. and M.Eng.
in Computer Science and Electrical Engineering from MIT in 2009 and 2010, respectively, and his Ph.D. in
Computer Science and Engineering from MIT in 2016.

Citizenship
U.S. Citizen

Education
Ph.D. in Computer Science and Engineering September 2016
Massachusetts Institute of Technology Cambridge, MA
Thesis: Performance Engineering of Multicore Software: Developing a Science of Fast Code for the Post-
Moore Era
Advisor: Professor Charles E. Leiserson
Master of Engineering in Computer Science and Electrical Engineering June 2010
Massachusetts Institute of Technology Cambridge, MA
Thesis: Design and Analysis of a Nondeterministic Parallel Breadth-First Search Algorithm
Advisor: Professor Charles E. Leiserson
Bachelor of Science in Computer Science and Electrical Engineering June 2009
Massachusetts Institute of Technology Cambridge, MA
GPA: 4.9/5.0

Research experience
Research scientist 3 MIT CSAIL July 2017–present
PI: Professor Charles E. Leiserson Supertech Research Group

Cambridge, MA
Postdoctoral associate MIT CSAIL September 2016–June 2017
PI: Professor Charles E. Leiserson Supertech Research Group

Cambridge, MA

1

mailto:neboat@mit.edu
neboat@mit.edu
http://neboat.mit.edu/

Research assistant MIT CSAIL August 2010–August 2016
Advisor: Professor Charles E. Leiserson Supertech Research Group

Cambridge, MA
Intern U.S. Department of Defense Summer 2008, Summer 2009
Researched methods for comparing algorithmic differences between two version of a function in a computer program.

Teaching experience
Instructor 6.172: Performance Engineering of Software Systems (U)

MIT EECS Fall 2019
[6.7/7.0 overall rating]
Course page: https://learning-modules.mit.edu/class/index.html?uuid=/course/6/fa19/6.172
Instructor 6.172/6.871: Performance Engineering of Software Systems (U/G)

MIT EECS Fall 2017
[6.8/7.0 overall rating; Awarded MIT EECS Department Outstanding Educator Award]
Course page: https://learning-modules.mit.edu/class/index.html?uuid=/course/6/fa17/6.172
Instructor 6.S898: Advanced Performance Engineering for Multicore Applications (G)

MIT EECS Spring 2017
Assistant facilitator 6.886: Advanced Performance Engineering for Multicore Applications (G)

MIT EECS Spring 2015
Teaching assistant 6.172: Performance Engineering of Software Systems (U)

MIT EECS Fall 2014
[6.8/7.0 overall rating]
Course page: http://stellar.mit.edu/S/course/6/fa14/6.172/index.html
Lecture scribe 6.172: Performance Engineering of Software Systems (U)

MIT EECS Fall 2011
Course page: http://stellar.mit.edu/S/course/6/fa11/6.172/index.html
Teaching assistant 6.046: Design and Analysis of Algorithms (U)

MIT EECS Fall 2009
Course page: http://stellar.mit.edu/S/course/6/fa09/6.046/index.html

Awards and honors
Keynote at the 14th International Workshop on Programming Models and Applica-
tions for Multicores and Manycores

February 2023

OpenCilk: Architecting a Task-Parallel Software Infrastructure for Modularity, Extensibility, and Performance
United States Department of the Air Force Artificial Intelligence Accelerator Scientific
Excellence Award

July 2022

For architecting OpenCilk, including inventing and implementing numerous innovative software mechanisms incor-
porated within this modular and fully open-source task-parallel programming platform.
Best Paper Award Finalist January 2020
Received from APoCS, 2020 for “Cilkmem: Algorithms for Analyzing the Memory High-Water Mark of Fork-Join
Parallel Programs.”
MIT EECS Department Outstanding Educator Award May 2018
Best Paper Award February 2017
Received at PPoPP, 2017 for “Tapir: Embedding Fork-Join Parallelism into LLVM’s Intermediate Representation.”
Akamai Fellowship 2015

2

https://learning-modules.mit.edu/class/index.html?uuid=/course/6/fa19/6.172
https://learning-modules.mit.edu/class/index.html?uuid=/course/6/fa17/6.172
http://stellar.mit.edu/S/course/6/fa14/6.172/index.html
http://stellar.mit.edu/S/course/6/fa11/6.172/index.html
http://stellar.mit.edu/S/course/6/fa09/6.046/index.html

Outstanding Paper Award June 2014
Received from JIP, 2013 for “Finding a Hamiltonian Path in a Cube with Specified Turns is Hard.”
NSF Graduate Research Fellowship 2010–2015
Received from National Science Foundation.
Charles and Jennifer Johnson CS M.Eng. Prize May 2010
Received for M.Eng. thesis on a work-efficient parallel breadth-first search algorithm.
Siebel Scholar 2009–2010
Received from Siebel Foundation.
Robert M. Fano UROP Award for Outstanding EECS UROP May 2009
Received for work on a work-efficient parallel breadth-first search algorithm.
Arnold L. Nylander Advanced Undergraduate Project Award May 2009
Received for work on a work-efficient parallel breadth-first search algorithm.
Northern Telecom/BNR Project Award for Best 6.111 Laboratory Project May 2009
Received for project on voice recognition in hardware.
Stokes Educational Scholarship Program 2005–2009
Received from U.S. Department of Defense.

Society memberships

IEEE (Member) 2015–present
SIAM (Member) 2012–present
ACM (Member) 2010–present
Phi Beta Kappa National Honor Society (Member) 2009–present
Sigma Xi Scientific Research Society (Associate Member) 2009–present

Publications

Tim Kaler, Xuhao Chen, Brian Wheatman, Dorothy Curtis, Bruce Hoppe, Tao B. Schardl, and Charles E.
Leiserson. “Speedcode: Software Performance Engineering Education via the Coding of Didactic Exercises”.
In: EduPar. 2024, pp. 391–394. doi: 10.1109/IPDPSW63119.2024.00087.
Helen Xu, Tao B. Schardl, Michael Pellauer, and Joel S. Emer. “Optimizing Compression Schemes for Parallel
Sparse Tensor Algebra”. In: HPEC. 2023, pp. 1–7. doi: 10.1109/HPEC58863.2023.10363624.
Tim Kaler, Alexandros-Stavros Iliopoulos, Philip Murzynowski, Tao B. Schardl, Charles E. Leiserson, and
Jie Chen. “Communication-Efficient Graph Neural Networks with Probabilistic Neighborhood Expansion
Analysis and Caching”. In: MLSys. 2023. url: https://proceedings.mlsys.org/paper_files/paper/2023.
Tao B. Schardl and I-Ting Angelina Lee. “OpenCilk: A Modular and Extensible Software Infrastructure for
Fast Task-Parallel Code”. In: PPoPP. 2023, pp. 189–203. doi: 10.1145/3572848.3577509.
RocíoCarratalá-Sáez,ArturoGonzález-Escribano,Alexandros-Stavros Iliopoulos, Charles E. Leiserson, Char-
lotte Park, Isabel Rosa, Tao B. Schardl, Yuri Torres, and David P. Bunde. “Peachy Parallel Assignments”. In:
EduHPC. 2022, pp. 50–56. doi: 10.1109/EduHPC56719.2022.00012.
Tim Kaler, Nickolas Stathas, Anne Ouyang, Alexandros-Stavros Iliopoulos, Tao B. Schardl, Charles E. Leis-
erson, and Jie Chen. “Accelerating Training and Inference of Graph Neural Networks with Fast Sampling
and Pipelining”. In: MLSys. 2022. url: https://proceedings.mlsys.org/paper_files/paper/2022.
Yifan Xu, Anchengcheng Zhou, Grace Q. Yin, Kunal Agrawal, I-Ting Angelina Lee, and Tao B. Schardl. “Effi-
cient Access History for Race Detection”. In:ALENEX. 2022, pp. 117–130. doi: 10.1137/1.9781611977042.10.

3

https://doi.org/10.1109/IPDPSW63119.2024.00087
https://doi.org/10.1109/HPEC58863.2023.10363624
https://proceedings.mlsys.org/paper_files/paper/2023
https://doi.org/10.1145/3572848.3577509
https://doi.org/10.1109/EduHPC56719.2022.00012
https://proceedings.mlsys.org/paper_files/paper/2022
https://doi.org/10.1137/1.9781611977042.10

Charles E. Leiserson and Tao B. Schardl. “AWork-Efficient Parallel Breadth-First Search Algorithm (or How
To Cope With the Nondeterminism of Reducers)”. In:Massive Graph Analytics. Ed. by David A. Bader. 2022,
pp. 3–33. doi: 10.1201/9781003033707-2.

WilliamHasenplaugh, TimKaler, Tao B. Schardl, and Charles E. Leiserson. “Ordering Heuristics for Parallel
Graph Coloring”. In: Massive Graph Analytics. Ed. by David A. Bader. 2022, pp. 193–221. doi: 10 . 1201 /
9781003033707-11.

TimKaler,WilliamHasenplaugh, Tao B. Schardl, andCharles E. Leiserson. “ExecutingDynamicData-Graph
Computations Deterministically Using Chromatic Scheduling”. In:Massive Graph Analytics. Ed. by David A.
Bader. 2022, pp. 397–429. doi: 10.1201/9781003033707-18.

Aaron Handleman, Arthur G. Rattew, I-Ting Angelina Lee, and Tao B. Schardl. “A Hybrid Scheduling
Scheme for Parallel Loops”. In: IPDPS. 2021, pp. 587–598. doi: 10.1109/IPDPS49936.2021.00067.
Tim Kaler, Tao B. Schardl, Brian Xie, Charles E. Leiserson, Jie Chen, Aldo Pareja, and Georgios Kollias.
“PARAD: A Work-Efficient Parallel Algorithm for Reverse-Mode Automatic Differentiation”. In: APOCS.
2021, pp. 144–158. doi: 10.1137/1.9781611976489.11.

Charles E. Leiserson, Neil C. Thompson, Joel S. Emer, Bradley C. Kuszmaul, Butler W. Lampson, Daniel
Sanchez, and Tao B. Schardl. “There’s plenty of room at the Top: What will drive computer performance
after Moore’s law?” In: Science 368.6495 (2020). issn: 0036-8075. doi: 10.1126/science.aam9744.
Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi, Tim Kaler,
Tao B. Schardl, and Charles E. Leiserson. “EvolveGCN: Evolving Graph Convolutional Networks for Dy-
namic Graphs”. In: AAAI. 2020, pp. 5363–5370. doi: 10.1609/aaai.v34i04.5984.
Tim Kaler, William Kuszmaul, Tao B. Schardl, and Daniele Vettorel. “Cilkmem: Algorithms for Analyzing
the Memory High-Water Mark of Fork-Join Parallel Programs”. In: APoCS. 2020, pp. 162–176. doi: 10.1137/
1.9781611976021.12.
[Best paper finalist].

Tao B. Schardl, William S. Moses, and Charles E. Leiserson. “Tapir: Embedding Recursive Fork-Join Paral-
lelism into LLVM’s Intermediate Representation”. In:ACMTransactions on Parallel Computing 6.4 (Dec. 2019).
doi: 10.1145/3365655.

Tao B. Schardl and Siddharth Samsi. “TapirXLA: Embedding Fork-Join Parallelism into the XLA Compiler
in TensorFlow Using Tapir”. In: HPEC. Sept. 2019, pp. 1–8. doi: 10.1109/HPEC.2019.8916312.
I-Ting Angelina Lee and Tao B. Schardl. “Efficient Race Detection for Reducer Hyperobjects”. In:ACMTrans.
Parallel Comput. 4.4 (Aug. 2018). issn: 2329-4949. doi: 10.1145/3205914.
Tao B. Schardl, I-Ting Angelina Lee, and Charles E. Leiserson. “Brief Announcement: Open Cilk”. In: SPAA.
2018, pp. 351–353. doi: 10.1145/3210377.3210658.

Tao B. Schardl, Tyler Denniston, Damon Doucet, Bradley C. Kuszmaul, I-Ting Angelina Lee, and Charles E.
Leiserson. “The CSI Framework for Compiler-Inserted Program Instrumentation”. In: Abstracts of SIGMET-
RICS. 2018, pp. 100–102. doi: 10.1145/3219617.3219657.
Tao B. Schardl, Tyler Denniston, Damon Doucet, Bradley C. Kuszmaul, I-Ting Angelina Lee, and Charles
E. Leiserson. “The CSI Framework for Compiler-Inserted Program Instrumentation”. In: SIGMETRICS 1.2
(Dec. 2017), 43:1–43:25. doi: 10.1145/3154502.

Tao B. Schardl, William S. Moses, and Charles E. Leiserson. “Tapir: Embedding Fork-Join Parallelism into
LLVM’s Intermediate Representation”. In: PPoPP. 2017, pp. 249–265. doi: 10.1145/3018743.3018758.
[Won best paper award; invited to a special issue of ACM Transactions on Parallel Computing].

4

https://doi.org/10.1201/9781003033707-2
https://doi.org/10.1201/9781003033707-11
https://doi.org/10.1201/9781003033707-11
https://doi.org/10.1201/9781003033707-18
https://doi.org/10.1109/IPDPS49936.2021.00067
https://doi.org/10.1137/1.9781611976489.11
https://doi.org/10.1126/science.aam9744
https://doi.org/10.1609/aaai.v34i04.5984
https://doi.org/10.1137/1.9781611976021.12
https://doi.org/10.1137/1.9781611976021.12
https://doi.org/10.1145/3365655
https://doi.org/10.1109/HPEC.2019.8916312
https://doi.org/10.1145/3205914
https://doi.org/10.1145/3210377.3210658
https://doi.org/10.1145/3219617.3219657
https://doi.org/10.1145/3154502
https://doi.org/10.1145/3018743.3018758

Tao B. Schardl. “Performance Engineering of Multicore Software: Developing a Science of Fast Code for
the Post-Moore Era”. PhD thesis. Cambridge, MA: Massachusetts Institute of Technology, Sept. 2016. doi:
1721.1/107290.

Tim Kaler, WilliamHasenplaugh, Tao B. Schardl, and Charles E. Leiserson. “Executing dynamic data-graph
computations deterministically using chromatic scheduling”. In: ACM Transactions on Parallel Computing 3.1
(July 2016), 2:1–2:31. doi: 10.1145/2896850.

ZacharyAbel, ErikD.Demaine,Martin L. Demaine, Sarah Eisenstat, Jayson Lynch, and Tao B. Schardl. “Who
Needs Crossings? Hardness of Plane Graph Rigidity”. In: SoCG. 2016, 3:1–3:15. doi: 10.4230/LIPIcs.SoCG.
2016.3.

Charles E. Leiserson, Tao B. Schardl, andWarut Suksompong. “Upper bounds on number of steals in rooted
trees”. In: Theory of Computing Systems 58.2 (Feb. 2016), pp. 223–240. doi: 10.1007/s00224-015-9613-9.

Warut Suksompong, Charles E. Leiserson, and Tao B. Schardl. “On the efficiency of localizedwork stealing”.
In: Information Processing Letters 116.2 (Feb. 2016), pp. 100–106. doi: 10.1016/j.ipl.2015.10.002.
I-Ting Angelina Lee, Charles E. Leiserson, Tao B. Schardl, Zhunping Zhang, and Jim Sukha. “On-the-fly
pipeline parallelism”. In: ACM Transactions on Parallel Computing 2.3 (Oct. 2015), 17:1–17:42. doi: 10.1145/
2809808.

I-Ting Angelina Lee and Tao B. Schardl. “Efficiently detecting races in Cilk programs that use reducer hy-
perobjects”. In: SPAA. 2015, pp. 111–122. doi: 10.1145/2755573.2755599.
[Invited to a special issue of ACM Transactions on Parallel Computing].

Tao B. Schardl, Bradley C. Kuszmaul, I-Ting Angelina Lee, William M. Leiserson, and Charles E. Leiserson.
“The Cilkprof scalability profiler”. In: SPAA. 2015, pp. 89–100. doi: 10.1145/2755573.2755603.
WilliamHasenplaugh, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. “Ordering heuristics for parallel
graph coloring”. In: SPAA. 2014, pp. 166–177. doi: 10.1145/2612669.2612697.
Tim Kaler, WilliamHasenplaugh, Tao B. Schardl, and Charles E. Leiserson. “Executing dynamic data-graph
computations deterministically using chromatic scheduling”. In: SPAA. 2014, pp. 154–165. doi: 10.1145/
2612669.2612673.
[Invited to a special issue of ACM Transactions on Parallel Computing].

Zachary Abel, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Jayson Lynch, and Tao B. Schardl.
“Finding a Hamiltonian path in a cube with specified turns is hard”. In: Journal of Information Processing 21.3
(2013), pp. 368–377. doi: 10.2197/ipsjjip.21.368.
[Won outstanding paper award].

Zachary Abel, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Jayson Lynch, Tao B. Schardl, and Isaac
Shapiro-Ellowitz. “Folding equilateral plane graphs”. In: International Journal of Computational Geometry &
Applications 23.02 (2013), pp. 75–92. doi: 10.1142/S0218195913600017.
I-Ting Angelina Lee, Charles E. Leiserson, Tao B. Schardl, Jim Sukha, and Zhunping Zhang. “On-the-fly
pipeline parallelism”. In: SPAA. 2013, pp. 140–151. doi: 10.1145/2486159.2486174.
[Invited to a special issue of ACM Transactions on Parallel Computing].

Charles E. Leiserson, Tao B. Schardl, and Jim Sukha. “Deterministic parallel random-number generation for
dynamic-multithreading platforms”. In: PPoPP. 2012, pp. 193–204. doi: 10.1145/2145816.2145841.
Zachary Abel, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Jayson Lynch, Tao B. Schardl, and Isaac
Shapiro-Ellowitz. “Folding equilateral plane graphs”. In: ISAAC. 2011, pp. 574–583. doi: 10.1007/978-3-
642-25591-5_59.

5

https://doi.org/1721.1/107290
https://doi.org/10.1145/2896850
https://doi.org/10.4230/LIPIcs.SoCG.2016.3
https://doi.org/10.4230/LIPIcs.SoCG.2016.3
https://doi.org/10.1007/s00224-015-9613-9
https://doi.org/10.1016/j.ipl.2015.10.002
https://doi.org/10.1145/2809808
https://doi.org/10.1145/2809808
https://doi.org/10.1145/2755573.2755599
https://doi.org/10.1145/2755573.2755603
https://doi.org/10.1145/2612669.2612697
https://doi.org/10.1145/2612669.2612673
https://doi.org/10.1145/2612669.2612673
https://doi.org/10.2197/ipsjjip.21.368
https://doi.org/10.1142/S0218195913600017
https://doi.org/10.1145/2486159.2486174
https://doi.org/10.1145/2145816.2145841
https://doi.org/10.1007/978-3-642-25591-5_59
https://doi.org/10.1007/978-3-642-25591-5_59

Charles E. Leiserson and Tao B. Schardl. “A work-efficient parallel breadth-first search algorithm (or how to
cope with the nondeterminism of reducers)”. In: SPAA. 2010, pp. 303–314. doi: 10.1145/1810479.1810534.
Tao B. Schardl. “Design and analysis of a nondeterministic parallel breadth-first search algorithm”. MA
thesis. Cambridge, MA: Massachusetts Institute of Technology, May 2010. doi: 1721.1/61575.
[Awarded the Charles and Jennifer Johnson CS M.Eng. Prize].

Mentoring and Supervision

Research advisees

Ryan Deng PhD MIT EECS Current
Kenny Zhang PhD MIT EECS Current
Sabiyyah Ali MEng MIT EECS Current
Elie Cuevas MEng MIT EECS Current
Satya Holla MEng MIT EECS August 2024
Thesis: Labeling Schemes for Improving Cilksan Performance
Jay Hilton MEng MIT EECS May 2024
Thesis: Enabling the Rust Compiler to Reason about Fork/Join Parallelism via Tapir
Luka Govedič MEng MIT EECS June 2023
Thesis: Improving the Performance of Parallel Loops in OpenCilk
August Trollback MEng MIT EECS February 2023
Thesis: Continuation Stealing in Julia
Nikhil Reddy MEng MIT EECS September 2022
Thesis: Optimizing Parallel Performance with Work and Span in the OpenCilk Compiler
Isabel Rosa MEng MIT EECS May 2022
Thesis: Performance Engineering of Directional Message-Passing Algorithms Through a Stencil-Based Ap-
proach for Applications in Molecular Dynamics
Helen Xu PhD Reader MIT EECS February 2022
Thesis: The Locality-First Strategy for Developing Efficient Multicore Algorithms
Tim Kralj MEng MIT EECS June 2021
Thesis: Composing Parallel Runtime Systems: A Case Study in How to Compose the Julia and OpenCilk
Runtimes
Helen He MEng MIT EECS June 2021
Thesis: Performance Engineering of Reactive Molecular Dynamics Simulations
Tim Kaler PhD Reader MIT EECS September 2020
Thesis: Programming Technologies for Engineering Quality Multicore Code
Sev Kozak MEng MIT EECS June 2020
Thesis: Chasing Zero Variability in Software Performance
Grace Yin MEng MIT EECS May 2020
Thesis: Parallel Exception Handling in Cilk
Stephanie Ren MEng MIT EECS June 2019
Thesis: Vector-Aware Space Cuts in Stencil Computations
Nipun Pitimanaaree MEng MIT EECS June 2019
Thesis: Provably Efficient Randomized Work Stealing with First-Class Parallel Loops
Michael Shah PhD Reader Tufts Computer Science August 2017

6

https://doi.org/10.1145/1810479.1810534
https://doi.org/1721.1/61575

Thesis: Understanding and Tuning the Performance of Critical Sectionswith ProgramAnalysis and Software
Visualization Tools
William S. Moses MEng MIT EECS June 2017
Thesis: How Should Compilers Represent Fork-Join Parallelism?

Postdocs

Kyle Singer MIT CSAIL July 2023–present
Tim Kaler MIT CSAIL September 2020–August 2023
Alexandros-Stavros Iliopoulos MIT CSAIL June 2020–June 2023

Grants
Modernizing Compiler Design for Platform and Performance Portability
Los Alamos National Laboratory $1,000,000 Research scientist August 2024–July 2029
POSE: Phase II: Open Source Ecosystem for OpenCilk
National Science Foundation $1,500,000 Research scientist August 2024–July 2026
POSE: Phase I: Open Source Ecosystem for OpenCilk
National Science Foundation $ 300,000 Research scientist September 2023–May 2024
CESMIX: Center for the Exascale Simulation of Material Interfaces in Extreme Environments
U.S. Department of Energy $8,550,000 Research scientist September 2020–September 2025
Fast AI: Quick Development of Portable High-Performance AI Applications
MIT and U.S. Air Force $6,050,000 Research scientist November 2019–September 2024
CCRI: Medium: Cilk Infrastructure for Next-Generation Parallel-Programming Research
National Science Foundation $1,500,000 Chief architect September 2019–September 2023
xGraph: Accelerated and Explainable Graph Deep Learning with Applications to Financial Services
MIT and IBM $ 750,000 Research scientist September 2019–August 2023
Analysis and Optimization of Parallel Unstructured-Mesh Computations
Los Alamos National Laboratory $ 600,000 Research scientist January 2019–September 2023

Software
OpenCilk https://www.opencilk.org/, https://github.com/OpenCilk
The latest, open-source implementation of the Cilk parallel-computing platform.
fccode https://www.overleaf.com/read/gbqhfyncbgby
LATEXpackage and Pygments plugin for fast and flexible syntax-highlighting of code.
Tapir/LLVM https://github.com/wsmoses/Tapir-LLVM.git
Prototype implementation of the LLVM compiler with Tapir extensions for recursive fork-join parallelism.
CSI-LLVM https://github.com/csi-llvm
An implementation in LLVM of CSI, a framework that provides comprehensive static instrumentation.
Cilk tools https://github.com/neboat
A collection of dynamic-analysis tools for Cilk programs.
DotMix https://www.cilkplus.org/download#contributions
A deterministic parallel random-number generator for Intel® Cilk™ Plus.
PBFS http://web.mit.edu/neboat/www/code.html
A work-efficient parallel breadth-first search algorithm. Implementations are available for both Intel® Cilk™ Plus and
Cilk++. These implementations include an implementation of the bag data structure.

7

https://www.opencilk.org/
https://github.com/OpenCilk
https://www.overleaf.com/read/gbqhfyncbgby
https://github.com/wsmoses/Tapir-LLVM.git
https://github.com/csi-llvm
https://github.com/neboat
https://www.cilkplus.org/download#contributions
http://web.mit.edu/neboat/www/code.html

Technology transfer
OpenCilk, Tapir/LLVM
Los Alamos National Laboratory developed the Kitsune parallel-aware compiler toolchain based on OpenCilk.
Lucata Corporation developed a back-end to Tapir/LLVM that targets their custom in-memory-processing hardware.
The desigm of the T4 compiler for the Swarm scalable hardware architecture is based on Tapir/LLVM.
The Seq language for bioinformatics uses Tapir/LLVM to compile and optimize parallel language constructs.
The TAPAS hardware-synthesis tool uses Tapir/LLVM to synthesize parallel accelerators.
OpenCilk is being used for research and teaching at universities including UC Davis, Washington University in St.
Louis, CMU, and MIT.
Cilk-P
Intel used Cilk-P to produce an open-source prototype library that supports on-the-fly pipeline parallelism.
Cilkprof
Intel used the Cilkprof algorithm to develop a prototype scalability profiler as a Pin tool that they now distribute.
DotMix
DotMix provided the basis for the java.util.SplittableRandom random-number generator in Java JDK8.
Pedigrees
Intel incorporated the pedigree runtime mechanism into the Intel Cilk Plus runtime and the Intel and GNU C/C++
compilers.
PBFS
Intel used PBFS to implement a parallel version of the Murphi model checker that achieves nearly perfect parallel
speedup.

Technical talks
“C to Assembly”
Live-coding-demo guest lecture for 6.106: Software Performance Engineering September 2024
“OpenCilk: A Modular and Extensible Software Infrastructure for Fast Task-Parallel Code”
“Demo: Writing Fast Task-Parallel Code Using OpenCilk”
NUWEST: NNSA-University Workshop on Exascale Simulation Technologies January 2024
“The Cilk Runtime System”
Guest lecture for 6.106: Software Performance Engineering November 2023
“Fast AI”
BT Insights Program November 2023
Generative AI for Reinvention: Enabling the C-Suite October 2023
“C to Assembly”
Live-coding-demo guest lecture for 6.106: Software Performance Engineering September 2023
“SpeedCode: Software performance engineering education via Coding of didactic exercises”
Tutorial at SPAA June 2023
Presented with Tim Kaler, I-Ting Angelina Lee, and Charles E. Leiserson.
“Revisiting Matrix Multiplication”
Guest lecture for 6.506: Algorithm Engineering May 2023
“The Future of Software Performance after Moore’s Law Ends”
USGA Computing Day April 2023
“OpenCilk: A Modular and Extensible Software Infrastructure for Fast Task-Parallel Code”
PPoPP February 2023

8

“OpenCilk: Architecting a Task-Parallel Software Infrastructure for Modularity, Extensibility, and Perfor-
mance”
Keynote at 14th International Workshop on Programming Models and Applications
for Multicores and Manycores

February 2023

“What Compilers Can and Cannot Do”
Guest lecture for 6.106: Performance Engineering of Software Systems November 2022
“C to Assembly”
Live-coding-demo guest lecture for 6.106: Performance Engineering of Software Sys-
tems

September 2022

“C to Assembly”
Guest lecture for 6.172: Performance Engineering of Software Systems September 2021
“Panel: What’s Next for Moore’s Law?”
CSAIL Alliances Annual Meeting June 2021
“C to Assembly”
Live-coding-demo guest lecture for 6.172: Performance Engineering of Software Sys-
tems

September 2020

“Tutorial: Research and Teaching with OpenCilk”
SPAA July 2020
Presented with Dorothy Curtis, I-Ting Angelina Lee, Alexandros-Stavros Iliopoulos, and Charles E. Leiserson.
“TapirXLA: Embedding Fork-Join Parallelism into the XLA Compiler in TensorFlow using Tapir”
HPEC September 2019
“Tapir: Embedding Recursive Fork-Join Parallelism into LLVM’s Intermediate Representation”
Fast Code Seminar, MIT CSAIL August 2019
“Tapir: Embedding Recursive Fork-Join Parallelism into LLVM IR”
LLVM/Systems Seminar Series, MIT and Northeastern University July 2019
“Ideal versus Reality: Optimal Parallelism and Offloading Support in LLVM”
Birds of a Feather, Bay Area LLVM Developers’ Meeting October 2018
Presented with Xinmin Tian, Hal Finkel, Johannes Doerfert, Vikram Adve
“What Compilers Can and Cannot Do”
Guest lecture for 6.172: Performance Engineering of Software Systems October 2018
“C to Assembly”
Guest lecture for 6.172: Performance Engineering of Software Systems September 2018
“Parallel Algorithms”
Modern Algorithms Workshop, MIT CSAIL September 2018
Presented with Charles E. Leiserson.
“Brief Announcement: Open Cilk”
SPAA July 2018
“The CSI Framework for Compiler-Inserted Program Instrumentation”
SIGMETRICS June 2018
“Tapir: Embedding Fork-Join Parallelism into LLVM’s Intermediate Representation”
Invited talk, University of Maryland March 2018
Invited talk, Sandia National Laboratories October 2017
PPoPP February 2017
Invited talk, University of Texas at Austin February 2017
“Principles of Tapir”
LLVM Performance Workshop (colocated with CGO) February 2017
“Tapir: Embedding Fork-Join Parallelism into LLVM’s Intermediate Representation”
MIT LLVM Seminar October 2016

9

“Invited Talk: Tapir: Embedding Fork-Join Parallelism into LLVM’s Intermediate Representation”
LCPC September 2016
“Performance Engineering of Multicore Software: Developing a Science of Fast Code for the Post-Moore
Era”
Doctoral Thesis Defense August 2016
“Deterministic Parallel Random-Number Generation, Science-Based Performance Engineering, and Life Af-
ter Moore’s Law”
MIT EECS Graduating Students Day April 2016
Invited talk, National University of Singapore April 2016
Invited talk, Lehigh University March 2016
Invited talk, University of Illinois Urbana Champaign March 2016
“Three Efficient and Scalable Graph Algorithms”
GraphDay@CSAIL March 2016
“Analysis of multithreaded algorithms”
Guest lecture for 6.172: Performance Engineering of Software Systems October 2015
“The Cilkprof scalability profiler”
SPAA June 2015
“On-the-fly pipeline parallelism”
Charles E. Leiserson’s 60th-Birthday Symposium November 2013
Given as a joint talk with I-Ting Angelina Lee.
Invited talk, Washington University in St. Louis October 2013
Given as a joint talk with I-Ting Angelina Lee.
SPAA July 2013
Given as a joint talk with I-Ting Angelina Lee.
“Chromatic scheduling”
Guest lecture for 6.172: Performance Engineering of Software Systems October 2012
“Deterministic parallel random-number generation for dynamic-multithreading platforms”
PPoPP February 2012
MIT Industrial Liaison Program seminar talk, CSAIL series February 2012
“Awork-efficient parallel breadth-first search algorithm (or how to copewith the nondeterminismof reducer
hyperobjects)”
SPAA June 2010
“Parallel breadth-first search using Cilk”
Technical Seminar Series, ITA June 2010
Invited talk, Intel Corporation May 2010

Professional services
External service reviewer for tenure-promotion case 2024
Treasurer 2023–present
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA)
Finance Chair 2023, present
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP)
Associate Editor 2021–2023
ACM Transactions on Parallel Computing (TOPC)
Program committee member
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA) 2019–2024

10

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP)

2022

SIAM Symposium on Algorithmic Principles of Computer Systems (APoCS) 2020
European Symposium on Algorithms, Engineering and Applications Track (ESA —
Track B)

2019

International Conference on Parallel Architectures and Compilation Techniques (PACT) 2019
ACM/IEEE Supercomputing Conference (SC), Algorithms Track 2018
High Performance Computing & Simulation (HPCS) Special Session on Compiler Ar-
chitecture, Design and Optimization (CADO)

2018

Workshop committee member 2020
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA)
Seminar organizer June 2019–present
Helped organize “MIT Fast Code Seminar.”
Course facilitator February–May 2019
Organized class “CSAI-LOL: The Applications of Stand-Up Comedy” at MIT CSAIL.
LLVMPar coordinator 2018–2019
Coordinated LLVMPar, the LLVM working group to explore additions and modifications to LLVM’s intermediate rep-
resentation to support parallelism.
Brief announcements committee member 2019
ACM Principles and Practice of Parallel Programming (PPoPP) Brief Announcements Committee
Seminar facilitator Summer 2019
Organized the LLVM/Systems Summer Seminar series at MIT CSAIL and Northeastern University.
Seminar facilitator Fall 2016
Organized a seminar on LLVM at MIT CSAIL.
Extended review committee member Spring 2016
International Conference on Parallel Architectures and Compilation Techniques (PACT)
Session chair 2015
Symposium on Parallelism in Algorithms and Architectures (SPAA)
Reviewer or subreviewer
ACM Journal of Experimental Algorithms (JEA) 2022
SIAM Conference on Applied and Computational Discrete Algorithms (ACDA) 2021
Elsevier Journal of Parallel and Distributed Computing (JPDC) 2020
ACM Transactions on Architecture and Code Optimization (TACO) 2019
ACM Transactions on Architecture and Code Optimization (TACO) 2019
ACM Computing Surveys (CSUR) 2019
ACM Transactions on Parallel Computing (TOPC) 2018
ACM Journal of Experimental Algorithmics (JEA) 2018
ACM Journal of Experimental Algorithmics (JEA) 2017
ACM Transactions on Algorithms (TALG) 2017
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA) 2017
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI)

2017

Elsevier Parallel Computing Journal (ParCo) 2017
ACM Transactions on Parallel Computing (TOPC) 2016
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA) 2015
ACM Transactions on Parallel Computing (TOPC) 2014
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA) 2013
IEEE International Parallel and Distributed Processing Symposium (IPDPS) 2013

11

Other work experience
Principal Software Engineer (part time) Emerald Innovations July 2023–present
Intern U.S. Department of Defense Summer 2007
Designed and implemented a Fuzzy ARTMap and Fuzzy ARAM in Smalltalk for the Automated Intelligence Services
group.
Intern U.S. Department of Defense Summer 2006
Developed software for the Wireless and Mobile Systems Development group.

General experience
Programming languages (in alphabetical order)
Assembly, Bash, C/C++, Cilk, Java, JavaScript, LATEX, Make, Perl, Python, Scheme, Smalltalk, TypeScript, Verilog
Software technologies and systems
Compilers (LLVM, GCC), Cilk work-stealing runtime systems, Linux kernel, Intel® Pin
Relevant courses
6.856 Randomized Algorithms; 6.823 Computer System Architecture; 6.851 Advanced Data Structures; 6.854 Ad-
vanced Algorithms; 6.875 Cryptography and Cryptanalysis; 6.115 Microcomputer Project Laboratory; 6.840 Theory
of Computation; 6.828 Operating Systems Engineering; 6.111 Introductory Digital Systems Laboratory; 6.035 Com-
puter Language Engineering

12

