
Deterministic Parallel Random-Number Generation
for Dynamic-Multithreading Platforms

Charles E. Leiserson, Tao B. Schardl, and Jim Sukha

MIT Computer Science and Artificial Intelligence Laboratory

PPoPP 2012

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 1 / 32

Serial random-number generation

A serial (pseudo)random-number generator (RNG) operates as a
stream.

It starts in some initial state S1.
The i th call generates the random number f (Si).
The i th call also updates the state Si+1 = g(Si).

State-of-the-art: Mersenne twister [MN98].

Property: From a fixed initial state, an RNG generates a deterministic
sequence of pseudorandom numbers.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 2 / 32

Why determinism?

Determinism allows a program’s execution to be repeatable.
Repeatable execution supports efficient debugging, allowing
programmers to repeatedly observe bugs, and thereby hone in on
those bugs.

Determinism is particularly appealing in parallel programming.

Lee [Lee06] cites the nondeterminism of multithreaded programs
as a key reason that programming large-scale parallel applications
remains error prone and difficult.
Bocchino et al. [BAAS09] argue persuasively that multithreaded
programs should be deterministic by default.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 3 / 32

Dynamic multithreading

Dynamic multithreading (dthreading) concurrency platforms offer a
processor-oblivious model of computation.

The language exposes logical
parallelism within an application.
The runtime system schedules and
executes the computation on whatever
worker threads are available.
The platform encapsulates the
nondeterminism of scheduling, allowing
programmers to write deterministic
processor-oblivious codes.

Examples: Cilk, Fortress, Habenero, OpenMP, TBB, TPL, X10, etc.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 4 / 32

Dthreading example: Cilk

Cilk extends C/C++ with two keywords, cilk_spawn and cilk_sync,
which express potential parallelism in code.

1 int fib (int n) {
2 if (n < 2) return n;
3 else {
4 int x, y;
5 x = cilk_spawn fib(n-1);
6 y = fib(n-2);
7 cilk_sync;
8 return x+y;
9 } }

The named child function
of a cilk_spawn may
execute in parallel with the
parent caller.
Control cannot pass a
cilk_sync until all spawned
children have returned.

Cilk keywords grant permission for parallel execution. They do not
command parallel execution.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 5 / 32

Dthreading example: Cilk execution model

A Cilk program’s execution can be modeled with a computation dag.

Example: fib(4)

1 int fib (int n) {
2 if (n < 2) return n;
3 else {
4 int x, y;
5 x = cilk_spawn fib(n-1);
6 y = fib(n-2);
7 cilk_sync;
8 return x+y;
9 } }

⇒
4

3

2

1 0

1

2

1 0

Nodes represents strands — serial sequences of instructions
containing no parallel control.
Edges depict parallel control dependencies between strands.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 6 / 32

Dthreading example: Cilk execution model

The computation dag for a Cilk program’s execution unfolds
dynamically and is embedded in the invocation tree.

Example: fib(4)
Program text corresponding to various strands is color-coded.

1 int fib (int n) {
2 if (n < 2) return n;
3 else {
4 int x, y;
5 x = cilk_spawn fib(n-1);
6 y = fib(n-2);
7 cilk_sync;
8 return x+y;
9 } }

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 7 / 32

Dthreading example: Cilk execution model

The computation dag for a Cilk program’s execution unfolds
dynamically and is embedded in the invocation tree.

Example: fib(4)
Program text corresponding to various strands is color-coded.

1 int fib (int n) {
2 if (n < 2) return n;
3 else {
4 int x, y;
5 x = cilk_spawn fib(n-1);
6 y = fib(n-2);
7 cilk_sync;
8 return x+y;
9 } }

4

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 7 / 32

Dthreading example: Cilk execution model

The computation dag for a Cilk program’s execution unfolds
dynamically and is embedded in the invocation tree.

Example: fib(4)
Program text corresponding to various strands is color-coded.

1 int fib (int n) {
2 if (n < 2) return n;
3 else {
4 int x, y;
5 x = cilk_spawn fib(n-1);
6 y = fib(n-2);
7 cilk_sync;
8 return x+y;
9 } }

4

3

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 7 / 32

Dthreading example: Cilk execution model

The computation dag for a Cilk program’s execution unfolds
dynamically and is embedded in the invocation tree.

Example: fib(4)
Program text corresponding to various strands is color-coded.

1 int fib (int n) {
2 if (n < 2) return n;
3 else {
4 int x, y;
5 x = cilk_spawn fib(n-1);
6 y = fib(n-2);
7 cilk_sync;
8 return x+y;
9 } }

4

3

2

2

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 7 / 32

Dthreading example: Cilk execution model

The computation dag for a Cilk program’s execution unfolds
dynamically and is embedded in the invocation tree.

Example: fib(4)
Program text corresponding to various strands is color-coded.

1 int fib (int n) {
2 if (n < 2) return n;
3 else {
4 int x, y;
5 x = cilk_spawn fib(n-1);
6 y = fib(n-2);
7 cilk_sync;
8 return x+y;
9 } }

4

3

2

1

1

2

1

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 7 / 32

Dthreading example: Cilk execution model

The computation dag for a Cilk program’s execution unfolds
dynamically and is embedded in the invocation tree.

Example: fib(4)
Program text corresponding to various strands is color-coded.

1 int fib (int n) {
2 if (n < 2) return n;
3 else {
4 int x, y;
5 x = cilk_spawn fib(n-1);
6 y = fib(n-2);
7 cilk_sync;
8 return x+y;
9 } }

4

3

2

1 0

1

2

1 0

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 7 / 32

Dthreading example: Cilk execution model

The computation dag for a Cilk program’s execution unfolds
dynamically and is embedded in the invocation tree.

Example: fib(4)
Program text corresponding to various strands is color-coded.

1 int fib (int n) {
2 if (n < 2) return n;
3 else {
4 int x, y;
5 x = cilk_spawn fib(n-1);
6 y = fib(n-2);
7 cilk_sync;
8 return x+y;
9 } }

4

3

2

1 0

1

2

1 0

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 7 / 32

Dthreading example: Cilk execution model

The computation dag for a Cilk program’s execution unfolds
dynamically and is embedded in the invocation tree.

Example: fib(4)
Program text corresponding to various strands is color-coded.

1 int fib (int n) {
2 if (n < 2) return n;
3 else {
4 int x, y;
5 x = cilk_spawn fib(n-1);
6 y = fib(n-2);
7 cilk_sync;
8 return x+y;
9 } }

4

3

2

1 0

1

2

1 0

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 7 / 32

Dthreading example: Cilk execution model

The computation dag for a Cilk program’s execution unfolds
dynamically and is embedded in the invocation tree.

Example: fib(4)
Program text corresponding to various strands is color-coded.

1 int fib (int n) {
2 if (n < 2) return n;
3 else {
4 int x, y;
5 x = cilk_spawn fib(n-1);
6 y = fib(n-2);
7 cilk_sync;
8 return x+y;
9 } }

4

3

2

1 0

1

2

1 0

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 7 / 32

Dthreading example: Cilk scheduler

Cilk’s runtime system incorporates a scheduler , which maps the
executing program onto worker threads dynamically at runtime.

4

3

2

1 0

1

2

1 0
⇒ Network

Memory I/O

Network

…P1 P2 P3workers

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 8 / 32

Dthreading example: Cilk scheduler

Cilk’s randomized work-stealing scheduler achieves provably good
performance.

4

3

2

1 0

1

2

1 0

4

3

2

1 0

1

2

1 0

4

3

2

1 0

1

2

1 0

Network

Memory I/O

Network

…P1 P2 P3workers

Cilk encapsulates the nondeterminism of scheduling, allowing
programmers to write deterministic, processor-oblivious codes.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 9 / 32

The DPRNG Problem

Outline

1 The DPRNG Problem

2 Pedigrees

3 The DOTMIX DPRNG

4 Concluding Remarks

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 10 / 32

The DPRNG Problem

DPRNG’s

For dthreaded programs, we want a deterministic parallel RNG
(DPRNG) — for a fixed initial state, each call to a DPRNG generates
the same pseudorandom number on every program execution.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 11 / 32

The DPRNG Problem

DPRNG’s

For dthreaded programs, we want a deterministic parallel RNG
(DPRNG) — for a fixed initial state, each call to a DPRNG generates
the same pseudorandom number on every program execution.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 11 / 32

The DPRNG Problem

DPRNG’s

For dthreaded programs, we want a deterministic parallel RNG
(DPRNG) — for a fixed initial state, each call to a DPRNG generates
the same pseudorandom number on every program execution.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 11 / 32

The DPRNG Problem

DPRNG’s

For dthreaded programs, we want a deterministic parallel RNG
(DPRNG) — for a fixed initial state, each call to a DPRNG generates
the same pseudorandom number on every program execution.

628

759

955

044

245

628

759

955

044

245

628

759

955

044

245

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 11 / 32

The DPRNG Problem

Parallelizing serial RNG’s

There are some conventional techniques for parallelizing serial RNG’s.

Idea: Make a serial RNG thread-safe
by locking the state.

Results in contention. ⋯⋯⋯⋯

RNG

P1 P2 P3

Idea: Give each worker thread its own
RNG.

No contention.

RNG RNG RNG

⋯⋯⋯⋯P1 P2 P3

Neither of these techniques produce a deterministic parallel RNG.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 12 / 32

The DPRNG Problem

Example: thread-local parallel RNG

Problem: Nondeterministic scheduling results in nonde-
terministic behavior.

RNG RNG RNG

⋯⋯⋯⋯P1 P2 P3

628

759

955

044

245

759

628

044

425

498

Note: This does produce an effective nondeterministic parallel RNG.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 13 / 32

The DPRNG Problem

SPRNG [MS00]

SPRNG is a DPRNG for pthreaded programs that creates an
independent RNG for each pthread via a deterministic
parameterization process.

Pthreaded programs are programs where parallel work is
explicitly mapped onto parallel threads, or pthreads.

Idea: Use SPRNG to create an independent RNG for each potentially
parallel subcomputation in a dthreaded program.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 14 / 32

The DPRNG Problem

SPRNG [MS00]

Problem: SPRNG is not designed to handle a computation with a
large number of dynamic threads.

1 int rfib (int n, PRNG g) {
2 if (n < 2) {
3 g.get();
4 return n;
5 } else {
6 int x, y;
7 PRNG h = g.spawn ();
8 x = cilk_spawn rfib(n-1, h);
9 y = rfib(n-2, g);

10 cilk_sync;
11 return x+y;
12 } }

Experiment: We ran rfib() us-
ing SPRNG and using Mersenne
twister parallelized using thread-
local RNG’s.

For Mersenne twister,
g.spawn() returns g.
For SPRNG, g.spawn()
deterministically forks a
new RNG stream from g.

Results:
SPRNG runs 50,000× slower than Mersenne twister on rfib(21).
SPRNG’s default RNG only guarantees the independence of 219

streams, and computing rfib(n) for n> 21 forfeits this guarantee.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 15 / 32

The DPRNG Problem

Our contributions

1 A runtime mechanism, called “pedigrees”, for tracking the
“lineage” of each strand in a dthreaded program.

Application Default (s) Pedigree (s) Overhead

fib 11.03 12.13 1.10
cholesky 2.75 2.92 1.06
fft 1.51 1.53 1.01
matmul 2.84 2.87 1.01
rectmul 6.20 6.21 1.00
strassen 5.23 5.24 1.00
queens 4.61 4.60 1.00
plu 7.32 7.35 1.00
heat 2.51 2.46 0.98
lu 7.88 7.25 0.92

2 A general strategy for efficiently generating high statistical quality
pseudorandom numbers deterministically in parallel, based on
hashing a strand’s pedigree.

3 A high-quality DPRNG library for Intel Cilk Plus, called DOTMIX,
which is 2–3 times as costly per call as a worker-local Mersenne
twister solution (mt) and passes most of the Dieharder [Bro11]
RNG statistical tests.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 16 / 32

The DPRNG Problem

Our contributions

1 A runtime mechanism, called “pedigrees”, for tracking the
“lineage” of each strand in a dthreaded program.

2 A general strategy for efficiently generating high statistical quality
pseudorandom numbers deterministically in parallel, based on
hashing a strand’s pedigree.

3 A high-quality DPRNG library for Intel Cilk Plus, called DOTMIX,
which is 2–3 times as costly per call as a worker-local Mersenne
twister solution (mt) and passes most of the Dieharder [Bro11]
RNG statistical tests.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 16 / 32

The DPRNG Problem

Our contributions

1 A runtime mechanism, called “pedigrees”, for tracking the
“lineage” of each strand in a dthreaded program.

2 A general strategy for efficiently generating high statistical quality
pseudorandom numbers deterministically in parallel, based on
hashing a strand’s pedigree.

3 A high-quality DPRNG library for Intel Cilk Plus, called DOTMIX,
which is 2–3 times as costly per call as a worker-local Mersenne
twister solution (mt) and passes most of the Dieharder [Bro11]
RNG statistical tests.

Application T1(DOTMIX)/T1(mt) T12(DOTMIX)/T12(mt)

fib 2.65 2.42
pi 0.74 0.72
maxIndSet 0.99 0.98
sampleSort 0.99 0.99
DiscreteHedging 1.03 1.03

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 16 / 32

The DPRNG Problem

Outline

1 The DPRNG Problem

2 Pedigrees

3 The DOTMIX DPRNG

4 Concluding Remarks

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 17 / 32

Pedigrees

Outline

1 The DPRNG Problem

2 Pedigrees

3 The DOTMIX DPRNG

4 Concluding Remarks

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 18 / 32

Pedigrees

Pedigrees

A pedigree is a unique, processor-oblivious identifier for a strand.

Simple Idea: We can uniquely identify strands by their location in the
invocation tree.

Example: fib(4)
4

3

2

1 0

1

2

1 0

J = 〈0,0,1,0〉

The invocation tree of a
deterministic,
processor-oblivious program
is deterministic and
processor-oblivious.
The pedigree J(s) of a strand
s can be viewed as the path
in the invocation tree from
the root to s.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 19 / 32

Pedigrees

Pedigrees

A pedigree is a unique, processor-oblivious identifier for a strand.

Simple Idea: We can uniquely identify strands by their location in the
invocation tree.

Example: fib(4)
4
0 1 2

3
0 1 2

2
0 1 2

1
0

0
0

1
0

2
0 1 2

1
0

0
0

J = 〈0,0,1,0〉

The invocation tree of a
deterministic,
processor-oblivious program
is deterministic and
processor-oblivious.
The pedigree J(s) of a strand
s can be viewed as the path
in the invocation tree from
the root to s.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 19 / 32

Pedigrees

Pedigrees

A pedigree is a unique, processor-oblivious identifier for a strand.

Simple Idea: We can uniquely identify strands by their location in the
invocation tree.

Example: fib(4)
4
0 1 2

3
0 1 2

2
0 1 2

1
0

0
0

1
0

2
0 1 2

1
0

0
0

J = 〈0,0,1,0〉

The invocation tree of a
deterministic,
processor-oblivious program
is deterministic and
processor-oblivious.
The pedigree J(s) of a strand
s can be viewed as the path
in the invocation tree from
the root to s.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 19 / 32

Pedigrees

Pedigrees

A pedigree is a unique, processor-oblivious identifier for a strand.

Simple Idea: We can uniquely identify strands by their location in the
invocation tree.

Example: fib(4)
4
0 1 2

3
0 1 2

2
0 1 2

1
0

0
0

1
0

2
0 1 2

1
0

0
0

J = 〈1,1,0〉

The invocation tree of a
deterministic,
processor-oblivious program
is deterministic and
processor-oblivious.
The pedigree J(s) of a strand
s can be viewed as the path
in the invocation tree from
the root to s.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 19 / 32

Pedigrees

Pedigrees

A pedigree is a unique, processor-oblivious identifier for a strand.

Simple Idea: We can uniquely identify strands by their location in the
invocation tree.

Example: fib(4)
4
0 1 2

3
0 1 2

2
0 1 2

1
0

0
0

1
0

2
0 1 2

1
0

0
0

J = 〈0,2〉

The invocation tree of a
deterministic,
processor-oblivious program
is deterministic and
processor-oblivious.
The pedigree J(s) of a strand
s can be viewed as the path
in the invocation tree from
the root to s.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 19 / 32

Pedigrees

Pedigree-based DPRNG’s

Simple Idea: We can generate a deterministic pseudorandom number
in a strand s by hashing the pedigree of s.

Complicating Issues: Tracking pedigrees involves changing the Cilk
compiler and runtime.

Since even code that does not need DPRNG’s must pay for the
overhead of pedigrees, the pedigree mechanism should be as
lightweight as possible.
Cilk applications may contain legacy or third-party C/C++
functions, some of which cannot be recompiled.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 20 / 32

Pedigrees

Spawn pedigrees

On a spawn of F from G:
1 G→ rank = p→ rank
2 G→sp-rep = p→current-frame
3 F̂→brank = G→ rank
4 F̂→parent = G→sp-rep
5 p→ rank = 0
6 p→current-frame = F̂

On stalling at a sync in G:
1 G→ rank = p→ rank

On resuming the continuation of a
spawn or sync in G:
1 p→ rank = G→ rank + 1
2 p→current-frame = G→sp-rep

Functions that are not
spawned are viewed as being
“inlined.”
Intuitively, strands are
identified by the number of
preceding cilk_spawn and
cilk_sync statements in their
parent spawned functions.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 21 / 32

Pedigrees

Loop pedigrees

Cilk provides a cilk_for keyword for writing parallel loops, which is
implemented using cilk_spawn and cilk_sync.

int n=6;
cilk_for(int i=0; i<n; ++i)
{ ... }

⇓
[0, 5] 0 1 2

[0, 2] 0 1 2

[0, 1] 0 1 2

0
0

1
0

2
0

[3, 5] 0 1 2

[3, 4] 0 1 2

3
0

4
0

5
0

J = 〈〉

We optimize the pedigrees
for cilk_for loops.

The pedigree of a
cilk_for loop iteration
is set to the loop
iteration index.
The cost of reading the
pedigree for a loop
iteration is reduced by
Θ(lg n).

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 22 / 32

Pedigrees

Loop pedigrees

Cilk provides a cilk_for keyword for writing parallel loops, which is
implemented using cilk_spawn and cilk_sync.

int n=6;
cilk_for(int i=0; i<n; ++i)
{ ... }

⇓
[0, 5] 0 1 2

[0, 2] 0 1 2

[0, 1] 0 1 2

0
0

1
0

2
0

[3, 5] 0 1 2

[3, 4] 0 1 2

3
0

4
0

5
0

J = 〈〉

We optimize the pedigrees
for cilk_for loops.

The pedigree of a
cilk_for loop iteration
is set to the loop
iteration index.
The cost of reading the
pedigree for a loop
iteration is reduced by
Θ(lg n).

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 22 / 32

Pedigrees

Loop pedigrees

Cilk provides a cilk_for keyword for writing parallel loops, which is
implemented using cilk_spawn and cilk_sync.

int n=6;
cilk_for(int i=0; i<n; ++i)
{ ... }

⇓
[0, 5]

[0, 2]

[0, 1]

0
0

1
1

2
2

[3, 5]

[3, 4]

3
3

4
4

5
5

J = 〈〉

We optimize the pedigrees
for cilk_for loops.

The pedigree of a
cilk_for loop iteration
is set to the loop
iteration index.
The cost of reading the
pedigree for a loop
iteration is reduced by
Θ(lg n).

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 22 / 32

Pedigrees

Loop pedigrees

Cilk provides a cilk_for keyword for writing parallel loops, which is
implemented using cilk_spawn and cilk_sync.

int n=6;
cilk_for(int i=0; i<n; ++i)
{ ... }

⇓
[0, 5]

[0, 2]

[0, 1]

0
0

1
1

2
2

[3, 5]

[3, 4]

3
3

4
4

5
5

J = 〈4〉

We optimize the pedigrees
for cilk_for loops.

The pedigree of a
cilk_for loop iteration
is set to the loop
iteration index.
The cost of reading the
pedigree for a loop
iteration is reduced by
Θ(lg n).

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 22 / 32

Pedigrees

Loop pedigrees

Cilk provides a cilk_for keyword for writing parallel loops, which is
implemented using cilk_spawn and cilk_sync.

int n=6;
cilk_for(int i=0; i<n; ++i)
{ ... }

⇓
[0, 5]

[0, 2]

[0, 1]

0
0

1
1

2
2

[3, 5]

[3, 4]

3
3

4
4

5
5

J = 〈2〉

We optimize the pedigrees
for cilk_for loops.

The pedigree of a
cilk_for loop iteration
is set to the loop
iteration index.
The cost of reading the
pedigree for a loop
iteration is reduced by
Θ(lg n).

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 22 / 32

The DOTMIX DPRNG

Outline

1 The DPRNG Problem

2 Pedigrees

3 The DOTMIX DPRNG

4 Concluding Remarks

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 23 / 32

The DOTMIX DPRNG

The DOTMIX DPRNG

DOTMIX hashes a pedigree in two stages.
1 Compression: Convert the pedigree into a single word while

preserving uniqueness.
2 Mixing: Remove correlation between the compressed pedigrees.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 24 / 32

The DOTMIX DPRNG

DOTMIX compression

Dot-product compression: Compute the dot product of the pedigree
with a vector of random odd 64-bit integers.

Theorem: For any randomly chosen vector Γ of odd integers and any
two distinct pedigrees J and J ′, the probability that Γ · J = Γ · J ′ is at
most 1/263.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 25 / 32

The DOTMIX DPRNG

Efficacy of DOTMIX

0
0.000001

0.001

0.01

0.1

0.5

0.9

0.99

0.999

0.999999
1

 1 100 10000 1e+06 1e+08 1e+10 1e+12

C
o
lli

si
o
n
 p

ro
b

a
b

ili
ty

Number of random numbers

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 26 / 32

The DOTMIX DPRNG

DOTMIX mixing

DOTMIX(r) “randomly” permutes the result of the compression function
using r iterations of the following “mixing” routine.

RC6 mixing: Let Xi designate the result of the i th round of mixing,
where X0 is the result of the compression function.

1 for (int i = 0; i < r ; ++i) {
2 Y = Xi · (2Xi + 1) mod 264;
3 Xi+1 = swap left and right halves of Y ;
4 }

One can show that this function is bijective [CRRY98], so mixing does
not generate further collisions.

Thanks to Ron Rivest for suggesting this mixing function.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 27 / 32

The DOTMIX DPRNG

Dieharder statistical tests

 0

 20

 40

 60

 80

 100

m
t

DotM
ix(16)

DotM
ix(8)

DotM
ix(4)

DotM
ix(2)

DotM
ix(1)

DotM
ix(0)

N
u
m

b
e
r

o
f

te
st

s

Passed
Weak
Poor
Failed

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 28 / 32

Concluding Remarks

Outline

1 The DPRNG Problem

2 Pedigrees

3 The DOTMIX DPRNG

4 Concluding Remarks

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 29 / 32

Concluding Remarks

Scoped pedigrees

Problem: How do we run a parallel subcomputation with the same
random numbers multiple times?

0

0 1

…

…

foo()

1

foo() foo()

foo()

Jleft = 〈0,0〉+ Jfoo

Solution: A scoped pedigree
is a pedigree excluding some
prefix, called a scope.

Initialize the
pedigree-based DPRNG
with a scope.
The DPRNG ignores the
scope of the pedigree
when computing
pseudorandom numbers.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 30 / 32

Concluding Remarks

Scoped pedigrees

Problem: How do we run a parallel subcomputation with the same
random numbers multiple times?

0

0 1

…

…

foo()

1

foo() foo()

foo()

Jleft = 〈0,0〉+ Jfoo

Solution: A scoped pedigree
is a pedigree excluding some
prefix, called a scope.

Initialize the
pedigree-based DPRNG
with a scope.
The DPRNG ignores the
scope of the pedigree
when computing
pseudorandom numbers.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 30 / 32

Concluding Remarks

Scoped pedigrees

Problem: How do we run a parallel subcomputation with the same
random numbers multiple times?

0

0 1

…

…

foo()

1

foo() foo()

foo()

Jmid = 〈0,1〉+ Jfoo

Solution: A scoped pedigree
is a pedigree excluding some
prefix, called a scope.

Initialize the
pedigree-based DPRNG
with a scope.
The DPRNG ignores the
scope of the pedigree
when computing
pseudorandom numbers.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 30 / 32

Concluding Remarks

Scoped pedigrees

Problem: How do we run a parallel subcomputation with the same
random numbers multiple times?

0

0 1

…

…

foo()

1

foo() foo()

foo()

Jright = 〈1〉+ Jfoo

Solution: A scoped pedigree
is a pedigree excluding some
prefix, called a scope.

Initialize the
pedigree-based DPRNG
with a scope.
The DPRNG ignores the
scope of the pedigree
when computing
pseudorandom numbers.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 30 / 32

Concluding Remarks

Scoped pedigrees

Problem: How do we run a parallel subcomputation with the same
random numbers multiple times?

0

0 1

…

…

foo()

1

foo() foo()

foo()

Jleft = Jmid = Jright = Jfoo

Solution: A scoped pedigree
is a pedigree excluding some
prefix, called a scope.

Initialize the
pedigree-based DPRNG
with a scope.
The DPRNG ignores the
scope of the pedigree
when computing
pseudorandom numbers.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 30 / 32

Concluding Remarks

Write your own DPRNG!

Write your own DPRNG library! Intel has put the pedigree mechanism
into its current compiler release for Cilk Plus, and will publish an
interface.

DPRNG library interface

template <typename T>
class DPRNG
{

DPRNG();
~DPRNG ();
void seed(uint64_t seed);
void scope(DPRNG_scope scope);
uint64_t get();

};

Pedigree interface

typedef struct pedigree
{

uint64_t rank;
pedigree* parent;

};

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 31 / 32

Concluding Remarks

Thank you

Questions?
4
0 1 2

3
0 1 2

2
0 1 2

1
0

0
0

1
0

2
0 1 2

1
0

0
0

0
0.000001

0.001

0.01

0.1

0.5

0.9

0.99

0.999

0.999999
1

 1 100 10000 1e+06 1e+08 1e+10 1e+12

C
o
lli

si
o
n
 p

ro
b

a
b

ili
ty

Number of random numbers

 0

 20

 40

 60

 80

 100

m
t

DotM
ix(16)

DotM
ix(8)

DotM
ix(4)

DotM
ix(2)

DotM
ix(1)

DotM
ix(0)

N
u
m

b
e
r

o
f

te
st

s

Passed
Weak
Poor
Failed

0

0 1

…

…

foo()

1

foo() foo()

foo()

Thanks to Guy Blelloch (CMU), David Chang (MIT), Angelina Lee (MIT), Ron Rivest
(MIT), Peter Shor (MIT), Kevin B. Smith (Intel), and Barry Tannenbaum (Intel) for
helping us with this research.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 32 / 32

Loop pedigrees

Cilk provides a cilk_for keyword for writing parallel loops, which is
implemented using cilk_spawn and cilk_sync.

int n=6;
cilk_for(int i=0; i<n; ++i)
{ ... }

⇓
[0, 5]

[0, 2]

[0, 1]

0 1

2

[3, 5]

[3, 4]

3 4

5

J = 〈1,0,1,0〉

We optimize the pedigrees
for cilk_for loops.

The pedigree of a
cilk_for loop iteration
is set to the loop
iteration index.
The cost of reading the
pedigree for a loop
iteration is reduced by
Θ(lg n).

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 33 / 32

Loop pedigrees

Cilk provides a cilk_for keyword for writing parallel loops, which is
implemented using cilk_spawn and cilk_sync.

int n=6;
cilk_for(int i=0; i<n; ++i)
{ ... }

⇓
[0, 5] 0 1 2

[0, 2] 0 1 2

[0, 1] 0 1 2

0
0

1
0

2
0

[3, 5] 0 1 2

[3, 4] 0 1 2

3
0

4
0

5
0

J = 〈1,0,1,0〉

We optimize the pedigrees
for cilk_for loops.

The pedigree of a
cilk_for loop iteration
is set to the loop
iteration index.
The cost of reading the
pedigree for a loop
iteration is reduced by
Θ(lg n).

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 33 / 32

Loop pedigrees

Cilk provides a cilk_for keyword for writing parallel loops, which is
implemented using cilk_spawn and cilk_sync.

int n=6;
cilk_for(int i=0; i<n; ++i)
{ ... }

⇓
[0, 5] 0 1 2

[0, 2] 0 1 2

[0, 1] 0 1 2

0
0

1
0

2
0

[3, 5] 0 1 2

[3, 4] 0 1 2

3
0

4
0

5
0

J = 〈1,0,1,0〉

We optimize the pedigrees
for cilk_for loops.

The pedigree of a
cilk_for loop iteration
is set to the loop
iteration index.
The cost of reading the
pedigree for a loop
iteration is reduced by
Θ(lg n).

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 33 / 32

Loop pedigrees

Cilk provides a cilk_for keyword for writing parallel loops, which is
implemented using cilk_spawn and cilk_sync.

int n=6;
cilk_for(int i=0; i<n; ++i)
{ ... }

⇓
[0, 5] 0 1 2

[0, 2] 0 1 2

[0, 1] 0 1 2

0
0

1
0

2
0

[3, 5] 0 1 2

[3, 4] 0 1 2

3
0

4
0

5
0

J = 〈0,1,0〉

We optimize the pedigrees
for cilk_for loops.

The pedigree of a
cilk_for loop iteration
is set to the loop
iteration index.
The cost of reading the
pedigree for a loop
iteration is reduced by
Θ(lg n).

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 33 / 32

Loop pedigrees

Cilk provides a cilk_for keyword for writing parallel loops, which is
implemented using cilk_spawn and cilk_sync.

int n=6;
cilk_for(int i=0; i<n; ++i)
{ ... }

⇓
[0, 5] 0 1 2

[0, 2] 0 1 2

[0, 1] 0 1 2

0
0

1
0

2
0

[3, 5] 0 1 2

[3, 4] 0 1 2

3
0

4
0

5
0

J = 〈0,1,0〉

We optimize the pedigrees
for cilk_for loops.

The pedigree of a
cilk_for loop iteration
is set to the loop
iteration index.
The cost of reading the
pedigree for a loop
iteration is reduced by
Θ(lg n).

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 33 / 32

Loop pedigrees

Cilk provides a cilk_for keyword for writing parallel loops, which is
implemented using cilk_spawn and cilk_sync.

int n=6;
cilk_for(int i=0; i<n; ++i)
{ ... }

⇓
[0, 5]

[0, 2]

[0, 1]

0
0

1
1

2
2

[3, 5]

[3, 4]

3
3

4
4

5
5

J = 〈0,1,0〉

We optimize the pedigrees
for cilk_for loops.

The pedigree of a
cilk_for loop iteration
is set to the loop
iteration index.
The cost of reading the
pedigree for a loop
iteration is reduced by
Θ(lg n).

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 33 / 32

Loop pedigrees

Cilk provides a cilk_for keyword for writing parallel loops, which is
implemented using cilk_spawn and cilk_sync.

int n=6;
cilk_for(int i=0; i<n; ++i)
{ ... }

⇓
[0, 5]

[0, 2]

[0, 1]

0
0

1
1

2
2

[3, 5]

[3, 4]

3
3

4
4

5
5

J = 〈4〉

We optimize the pedigrees
for cilk_for loops.

The pedigree of a
cilk_for loop iteration
is set to the loop
iteration index.
The cost of reading the
pedigree for a loop
iteration is reduced by
Θ(lg n).

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 33 / 32

Loop pedigrees

Cilk provides a cilk_for keyword for writing parallel loops, which is
implemented using cilk_spawn and cilk_sync.

int n=6;
cilk_for(int i=0; i<n; ++i)
{ ... }

⇓
[0, 5]

[0, 2]

[0, 1]

0
0

1
1

2
2

[3, 5]

[3, 4]

3
3

4
4

5
5

J = 〈2〉

We optimize the pedigrees
for cilk_for loops.

The pedigree of a
cilk_for loop iteration
is set to the loop
iteration index.
The cost of reading the
pedigree for a loop
iteration is reduced by
Θ(lg n).

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 33 / 32

DOTMIX compression

Dot-product compression: Compute the dot product of the pedigree
with a vector of random odd 64-bit integers.
Formally: Let m = 264, and let Γ = 〈γ1, γ2, . . . , γD〉 be a vector of odd
integers chosen uniformly at random from (2Zm/2 + 1)D. DOTMIX

compresses a pedigree J = 〈j1, j2, . . . , jD〉 using the function:

cΓ(J) =

(
D∑

k=1

γk · jk

)
mod m .

Theorem: For a randomly chosen compression function cΓ and any
two distinct pedigrees J, J ′ ∈ ZD

m, we have Pr {cΓ(J) = cΓ(J ′)} ≤ 2/m.
For m = 264, the probability of collision is at most 1/263.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 34 / 32

Efficacy of DOTMIX

Theorem: For a randomly chosen compression function cΓ and any
two distinct pedigrees J, J ′ ∈ ZD

m, we have Pr {cΓ(J) = cΓ(J ′)} ≤ 2/m.
Proof: Suppose cΓ(J) = cΓ(J ′). WLOG, assume J and J ′ differ in
rank 1. We therefore have (modulo m)

0 = cΓ(J)− cΓ(J ′) = γ1j1 − γ1j ′1 +
D∑

k=2

γk · jk −
D∑

k=2

γk · j ′k

=⇒j1 − j ′1 =

(
D∑

k=2

γk · (j ′k − jk)

)
· γ−1

1 .

Let y = j1 − j ′1, a = (
∑D

k=2 γk · (j ′k − jk)), and x = γ−1
1 . For fixed y and

a, there is ≤ 1 choice of x ∈ 2Zm/2 + 1 such that y = ax . By unique
inverses, there is ≤ 1 choice of γ1 such that y = ax . Hence, the
probability that the randomly chosen γ1 satisfies y = ax is ≤ 2/m.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 35 / 32

DOTMIX performance breakdown

 0

 100

 200

 300

 400

 500

 4 6 8 10 12 14 16 18 20

C
yc

le
s

pe
r R

N
G

 C
al

l

Pedigree Length L

DotMix, r=16
LCGMix, r=16

DotMix, r=4
LCGMix, r=4

Worker-Local Mersenne Twister
Global Mersenne Twister

 0

 100

 200

 300

 400

 500

 4 6 8 10 12 14 16 18 20

C
yc

le
s

pe
r L

ea
f N

od
e

Pedigree Length L

DotMix, r=16
DotMix, r=4

Pedigree Lookup
Worker Lookup

Empty Leaf

The longer the pedigree of a strand, the longer DOTMIX takes to
run.
Most of the cost of DOTMIX is in looking up the pedigree.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 36 / 32

Linear congruential DPRNG

We can write other DPRNG’s using pedigrees, such as LCGMIX,
which is based on linear congruential generators.

1 Compression: Let X be the state of the DPRNG in the rank-r
strand s of function F , and let a ∈R (2Zm/2 + 1) and b ∈R Zm.
Generate two pseudorandom numbers for s’s successor strands.

The spawned child of s gets L(X) = (aX) mod m.
The rank-r strand of F gets R(X) = (X + rb) mod m.

This is similar to the Lehmer-tree scheme of [FHJ+84].
2 Mixing: RC6 mixing.

This DPRNG achieves similar performance and statistical quality as
DOTMIX, but provides weaker theoretical guarantees.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 37 / 32

References

Robert L. Bocchino, Jr., Vikram S. Adve, Sarita V. Adve, and Marc Snir.
Parallel programming must be deterministic by default.
In HOTPAR. USENIX, 2009.

Robert G. Brown.
Dieharder: A random number test suite.
Available from http://www.phy.duke.edu/~rgb/General/dieharder.php, August 2011.

Scott Contini, Ronald L. Rivest, M. J. B. Robshaw, and Yiqun Lisa Yin.
The security of the RC6 block cipher.
Available from http://people.csail.mit.edu/rivest/publications.html, 1998.

Paul Frederickson, Robert Hiromoto, Thomas L. Jordan, Burton Smith, and Tony Warnock.
Pseudo-random trees in Monte Carlo.
Parallel Computing, 1(2):175–180, 1984.

Edward A. Lee.
The problem with threads.
Computer, 39:33–42, 2006.

Makoto Matsumoto and Takuji Nishimura.
Mersenne Twister: a 623-dimensionally equidistributed uniform pseudo-random number generator.
ACM TOMACS, 8:3–30, 1998.

Michael Mascagni and Ashok Srinivasan.
Algorithm 806: SPRNG: A scalable library for pseudorandom number generation.
ACM TOMS, 26(3):436–461, 2000.

Leiserson, Schardl, Sukha (MIT CSAIL) DPRNG February 28, 2012 38 / 32

http://www.phy.duke.edu/~rgb/General/dieharder.php
http://people.csail.mit.edu/rivest/publications.html

	The DPRNG Problem
	Pedigrees
	The DotMix DPRNG
	Concluding Remarks
	Appendix

