Case Study: Matrix Multiplication

6.S898: Advanced Performance Engineering for Multicore Applications

February 22, 2017

4k-by-4k Matrix Multiplication

Version	Implementation	Running time (s)	GFLOPS	Absolute speedup	Relative speedup	Fraction of peak
1	Python	25,552.48	0.005	1	-	0.00\%
2	Java	2,372.68	0.058	11	10.8	0.01\%
3	C	542.67	0.253	47	4.4	0.03\%
4	Parallel loops	69.80	1.969	Today, we'll look into the performance engineering behind versions 3-7.		
5	Parallel divide-and-conquer	3.80	36.180			
6	+ vectorization	1.10	124.914			
7	+ AVX intrinsics	0.41	337.812	62,806	2.7	40.45\%
8	Strassen	0.38	361.177	67,150	1.1	43.24\%

Outline

* The matrix multiplication problem
* Serial and parallel looping codes
* Cache-efficient matrix multiplication
* Hands-on: Vectorization using the compiler
- Vectorization by hand

Matrix Multiplication

Problem: Compute the product $\mathrm{C}=\left(c_{i j}\right)$ of two $n \times n$ matrices $\mathrm{A}=\left(a_{i j}\right)$ and $\mathrm{B}=\left(b_{i j}\right)$.

The matrix product obeys the following formula:

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

For simplicity, we shall assume that n is a power of 2 .

Three Nested Loops in C

```
for (int i = 0; i < n; ++i) {
    for (int j = 0; j< n; ++j) {
        for (int k = 0; k < n; ++k) {
        C[i][j] += A[i][k] * B[k][j];
        }
    }
}
```


Work of computation:

- n^{3} iterations
* Each iteration performs constant work.

GCC version 5.2.1 with -O3 optimization.
$\Theta\left(n^{3}\right)$ total work.

| Version | ImplementationRunning
 time(s) | GFLOPS | Absolute
 speedup | Relative
 speedup | Fraction of
 peak | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | C | 542.67 | 0.253 | 47 | 4.4 | 0.03% |

Parallel Loops

```
cilk_for (int i = 0; i < n; ++i) {
    cilk_for (int j = 0; j < n; ++j)
        for (int k = 0; k < n; ++k) {
            C[i][j] += A[i][k] * B[k][j];
        }
    }
}
```

| Version | ImplementationRunning
 time (s) | GFLOPS | Absolute
 speedup | Relative
 speedup | Fraction of
 peak | |
| :---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | C | 542.67 | 0.253 | 47 | 4.4 | 0.03% |
| 4 | Parallel loops | 69.80 | 1.969 | 366 | 7.8 | 0.24% |

But the machine has 18 cores! Where's my $18 x$ speedup!?

Work/Span Analysis of Parallel Loops

*Work: $T_{1}(\mathrm{n})=\Theta\left(n^{3}\right)$

* Span: $T_{\infty}(n)$

This code has ample parallelism, but still gets poor parallel speedup!

Memory Access Pattern for Looping Code

Matrices are stored in row-major order.

Layout of matrices in memory:

Cache Analysis of Looping Code

Layout of matrices in memory:

Suppose that n is sufficiently large. Let B be the size of a cache line.

* Computing an element of matrix C involves $\Theta(n / B)$ cache misses for matrix A and $\Theta(n)$ cache misses for matrix B .
* No temporal locality on matrix B. Cache can't store all of the cache lines for one column of matrix B.
* Computing each element of matrix C incurs $\Theta(n)$ cache misses.
* In total, $\Theta\left(n^{3}\right)$ cache lines are read to compute all of matrix C.

Improving Cache Efficiency

We can improve cache efficiency using a recursive divide-and-conquer algorithm.

* Imagine each matrix is subdivided into four quadrants.

$$
C=\left(\begin{array}{ll}
C_{00} & C_{01} \\
C_{10} & C_{11}
\end{array}\right) \quad A=\left(\begin{array}{ll}
A_{00} & A_{01} \\
A_{10} & A_{11}
\end{array}\right) \quad B=\left(\begin{array}{ll}
B_{00} & B_{01} \\
B_{10} & B_{11}
\end{array}\right)
$$

* The matrix product can be expressed recursively in terms of 8 products of submatrices:
$\left(\begin{array}{ll}C_{00} & C_{01} \\ C_{10} & C_{11}\end{array}\right)=\left(\begin{array}{ll}A_{00} B_{00}+A_{01} B_{10} & A_{00} B_{01}+A_{01} B_{11} \\ A_{10} B_{00}+A_{11} B_{10} & A_{10} B_{01}+A_{11} B_{11}\end{array}\right)$

Recursive Divide-And-Conquer

Analysis of Recursive Divide-And-Conquer

```
void mmdac(double *restrict C,
            double *restrict A,
            double *restrict B,
            int size, int n) {
    if (size <= THRESHOLD) {
    mmbase(C, A, B, size);
    } else {
        int s00 = 0;
        int s01 = size/2;
        int s10 = (size/2)*n;
        int s11 = (size/2)*(n+1);
        mmdac(C+s00, A+s00, B+s00, size/2, n);
        mmdac(C+s01, A+s00, B+s01, size/2, n);
        mmdac(C+s10, A+s10, B+s00, size/2, n);
        mmdac(C+s11, A+s10, B+s01, size/2, n);
        mmdac(C+s00, A+s01, B+s10, size/2, n);
        mmdac(C+s01, A+s01, B+s11, size/2, n);
        mmdac(C+s10, A+s11, B+s10, size/2, n);
        mmdac(C+s11, A+s11, B+s11, size/2, n);
    }
}

\section*{Work of computation:}
* Recurrence:
\[
T(n)=8 T(n / 2)+\Theta(1)
\]
* Solve the recurrence via the Master Method:
\(T(n)=\Theta\left(n^{3}\right)\)

\section*{Analysis of Recursive Divide-And-Conquer}
```

void mmdac(double *restrict C,
double *restrict A,
double *restrict B,
int size, int n) {
if (size <= THRESHOLD) {
mmbase(C, A, B, size);
} else {
int s00 = 0;
int s01 = size/2;
int s10 = (size/2)*n;
int s11 = (size/2)*(n+1);
mmdac(C+s00, A+s00, B+s00, size/2, n);
mmdac(C+s01, A+s00, B+s01, size/2, n);
mmdac(C+s10, A+s10, B+s00, size/2, n);
mmdac(C+s11, A+s10, B+s01, size/2, n);
mmdac(C+s00, A+s01, B+s10, size/2, n);
mmdac(C+s01, A+s01, B+s11, size/2, n);
mmdac(C+s10, A+s11, B+s10, size/2, n);
mmdac(C+s11, A+s11, B+s11, size/2, n);
}
}

```

Cache complexity: Let \(M\) be the cache size and \(B\) the size of a cache line. Assume the base case size fits in cache.
* Base case incurs
\(\Theta\left(n^{2} / B\right)\) cache misses.
* Recursi
\(\mathrm{Q}(n)=8\)
cache \(m\)
Significant improvement over \(\Theta\left(r^{3}\right)\) misses from looping code.
- Solution:
\[
\mathrm{Q}(n)=\Theta\left(n^{3} / M^{1 / 2} B\right)
\]

\section*{Parallel Divide-And-Conquer}
```

void mmdac(double *restrict C, double *restrict A,
double *restrict B, int size, int n) {
if (size <= THRESHOLD) {
mmbase(C, A, B, size);
} else {
int s00 = 0;
int s01 = size/2;
ample parallelism.
int s10 = (size/2)*n;
int s11 = (size/2)*(n+1);
cilk_spawn mmdac(C+s00, A+s00, B+s00, size/2, n);
cilk_spawn mmdac(C+s01, A+s00, B+s01, size/2, n);
cilk_spawn mmdac(C+s10, A+s10, B+s00, size/2, n);
mmdac(C+s11, A+s10, B+s01, size/2, n);
cilk_sync;
cilk_spawn mmdac(C+s00, A+s01, B+s10, size/2, n);
cilk_spawn mmdac(C+s01, A+s01, B+s11, size/2, n);
cilk_spawn mmdac(C+s10, A+s11, B+s10, size/2, n);
mmdac(C+s11, A+s11, B+s11, size/2, n);
cilk_sync;
}
}

```

\section*{This code has}

\section*{Work:}
\(T_{1}(n)=\Theta\left(n^{3}\right)\)

\section*{Span:}

Recurrence:
\(T_{\infty}(n)\)
\(=2 T_{\infty}(n / 2)+\Theta(1)\)

\section*{Solution:}
\(T_{\infty}(n)=\Theta(\mathrm{n})\)

\section*{Performance of Parallel Divide-And-Conquer}
\begin{tabular}{clrrrrrr} 
Version & Implementation & \begin{tabular}{c} 
Running \\
time (s)
\end{tabular} & GFLOPS & \begin{tabular}{l} 
Absolute \\
speedup
\end{tabular} & \begin{tabular}{r} 
Relative \\
speedup
\end{tabular} & \begin{tabular}{c} 
Fraction of \\
peak
\end{tabular} \\
\hline 3 & C & 542.67 & 0.253 & 47 & 4.4 & \(0.03 \%\) \\
4 & \begin{tabular}{l} 
Parallel loops
\end{tabular} & 69.80 & 1.969 & 366 & 7.8 & \(0.24 \%\) \\
5 & \begin{tabular}{l} 
Parallel divide- \\
and-conquer
\end{tabular} & 3.80 & 36.180 & 6,727 & 18.4 & \(4.33 \%\)
\end{tabular}

\section*{Where To Optimize Next?}
```

void mmdac(double *restrict C,
double *restrict A,
double *restrict B,
int size, int n) {
if (size <= THRESHOLD) {
mmbase(C, A, B, size);
} else {
int s00 = 0;
int s01 = size/2;
int s10 = (size/2)*n;
int s11 = (size/2)*(n+1);
mmdac(C+s00, A+s00, B+s00, size/2, n);
mmdac(C+s01, A+s00, B+s01, size/2, n);
mmdac(C+s10, A+s10, B+s00, size/2, n);
mmdac(C+s11, A+s10, B+s01, size/2, n);
mmdac(C+s00, A+s01, B+s10, size/2, n);
mmdac(C+s01, A+s01, B+s11, size/2, n);
mmdac(C+s10, A+s11, B+s10, size/2, n);
mmdac(C+s11, A+s11, B+s11, size/2, n);
}
}

```

\section*{Work of computation:}
* Write the recurrence:
\[
T(n)=8 T(n / 2)+\Theta(1)
\]
* Solve the recurrence via Master Method:
\[
T(n)=\Theta\left(n^{3}\right)
\]

Practically all of the work is in the base case!

\section*{Hands-On: Implement the Base Case}
* Download mm_dac.c: http:/ / pastebin.com/dl /MSmqi5Bq
* Implement a simple base case.
```

void mmbase(double *restrict C,
double *restrict A,
double *restrict B,
int size) {
for (int i = 0; i < size; ++i) {
for (int j = 0; j < size; ++j) {
for (int k = 0; k < size; ++k) {
C[i*n+j] += A[i*n+k] * B[k*n+j];
}
}
}
}

```
* Compile the code:
\$ clang -03 -g -fcilkplus -o mm_dac mm_dac.c
* Run it!

\section*{Hands-On: Vectorization Report}

Is this compiler vectorizing your code?
* Add the flags -Rpass=vector and
-Rpass-analysis=vector to your clang arguments to get a vectorization report.
*What does the report say?

For more on LLVM's -Rpass flag, see http:/ /blog.llvm.org/2014/11/loop-vectorization-diagnostics-and.html.

\section*{IEEE Floating-Point Arithmetic}

IEEE floating-point arithmetic is not associative.
* The statement printf("\%.17f", (0.1+0.2)+0.3); produces 0.60000000000000009 .
* The statement printf("\%.17f", 0.1+(0.2+0.3)); produces 0.59999999999999998 .

The compiler must assume that you care about this imprecision and therefore cannot reorder the floatingpoint operations in order to vectorize.

\section*{Hands-On: Vectorization, Attempt 1}

We don't care about this level of precision in the code's floating-point arithmetic, so let's add the -ffast-math flag to clang command.
* Is the performance any better?
*What does the vectorization report say now?

\section*{Why Didn't It Vectorize?}

LLVM does not deem it efficient to vectorize the innermost loop, which reads a column of matrix \(B\).


\section*{Hands-On: Vectorization, Attempt 2}

Here are two strategies you can try for fixing this problem:
Strategy
1. Transpose matrix \(B\).
2. Interchange the loops.

Resulting vectorizable access pattern


C


A

\(B^{T}\)


B


\section*{AVX Vector Instructions}

Modern Intel processors support the AVX vector instruction set.
* AVX supports 256-bit vector registers, whereas the older SSE instruction set supports 128-bit vector registers.
* Many common AVX instructions operate on 3 operands, rather than 2 , making them easier to use.

\section*{Hands-On: Vectorization, Attempt 3}

Once you have code that vectorizes, try using the AVX instructions, which can operate on 4 elements each.
* Add the -mavx flag to your clang command.
*What does the vectorizer report say now?
* Did you get a performance increase?

\section*{Performance With Vectorization}
\begin{tabular}{clrrrrr} 
Version & Implementation & \begin{tabular}{c} 
Running \\
time (s)
\end{tabular} & GFLOPS & \begin{tabular}{c} 
Absolute \\
speedup
\end{tabular} & \begin{tabular}{c} 
Relative \\
speedup
\end{tabular} & \begin{tabular}{c} 
Fraction of
\end{tabular} \\
\hline 3 & C & 542.67 & 0.253 & 47 & 4.4 & \(0.03 \%\) \\
4 & Parallel loops & 69.80 & 1.969 & 366 & 7.8 & \(0.24 \%\) \\
5 & \begin{tabular}{l} 
Parallel divide- \\
and-conquer
\end{tabular} & 3.80 & 36.180 & 6,727 & 18.4 & \(4.33 \%\) \\
6 & + vectorization & 1.10 & 124.914 & 23,224 & 3.5 & \(14.96 \%\)
\end{tabular}

How do we go even faster?

\section*{Vector Intrinsics}

Intel provides a library of intrinsic instructions for accessing their various vector instruction sets.
* C/C++ header: immintrin.h
* Database of vector intrinsic instructions: https://software.intel.com/sites/landingpage/ IntrinsicsGuide/

\section*{Some Useful AVX/AVX2 Instructions}

If we stare at this database and think creatively, we come up with an alternative base case for matrix multiplication!
* The __m256d type stores a vector of 4 doubles.
* The AVX intrinsics _mm256_add_pd() and _mm256_mul_pd() perform addition and multiplication.
* The AVX2 intrinsic _mm256_fmadd_pd() performs a fused multiply-add.
* The AVX intrinsics _mm256_permute_pd() and _mm256_permute2f128_pd() permute AVX registers.

\section*{Outer Product Base Case}

Idea: Compute outer products between subcolumns of matrix \(A\) by subrows of matrix \(B\).
Outer product produces a submatrix of C .


Store intermediate submatrix of C in 4 vector registers.


Store each subcolumn or subrow in 1 vector register.

\section*{Computing One Outer Product}

Compute 4 vector multiplications between the subcolumn of matrix \(A\) and the subrow of matrix \(B\).
\begin{tabular}{|c|}
\hline Vector \\
permutations
\end{tabular}

\begin{tabular}{|l|l|l|l|}
\hline & 1 & & \\
\hline 0 & & & \\
\hline & & & 3 \\
\hline & & 2 & \\
\hline
\end{tabular}
\[
=\begin{array}{|l|l|l|l|}
\hline 1 \\
\hline 0 \\
\hline 3 \\
\hline 2 \\
\hline
\end{array} \times \begin{array}{|l|l|l|l|}
\hline 0 & 1 & 2 & 3 \\
\hline
\end{array}
\]

\[
\mathrm{p}_{1}(\mathrm{a})
\]
\[
\mathrm{p}_{2}(\mathrm{~b})
\]

\section*{Computing a Whole Submatrix}

Computed products

* Iterate through subcolumns of A and subrows of \(B\) to compute a submatrix of C.
* Accumulate elements of C submatrix in separate vector registers.
* Once done, write C submatrix back to memory.
* All operations are element-wise!

\section*{Why Is This Base Case Fast?}

The whole base case can be implemented within vector registers using a few vector operations.
* 2 AVX registers to store a subcolumn of A and its permutation.
* 2 AVX registers to store a subrow of \(B\) and its permutation.
- 4 AVX registers to store a submatrix of C .
* 2 vector permutation operations.
* 4 vector multiplication and addition operations per subrowsubcolumn pair.

\section*{4k-by-4k Matrix Multiplication}
\begin{tabular}{cllrlrr} 
Version & Implementation & \begin{tabular}{c} 
Running \\
time (s)
\end{tabular} & GFLOPS & \begin{tabular}{l} 
Absolute \\
speedup
\end{tabular} & \begin{tabular}{c} 
Relative \\
speedup
\end{tabular} & \begin{tabular}{c} 
Fraction of \\
peak
\end{tabular} \\
\hline 1 & Python & \(25,552.48\) & 0.005 & 1 & - & \(0.00 \%\) \\
2 & Java & \(2,372.68\) & 0.058 & 11 & 10.8 & \(0.01 \%\) \\
3 & C & 542.67 & 0.253 & 47 & 4.4 & \(0.03 \%\) \\
4 & Parallel loops & 69.80 & 1.969 & 366 & 7.8 & \(0.24 \%\) \\
5 & \begin{tabular}{l} 
Parallel divide- \\
and-conquer
\end{tabular} & 3.80 & 36.180 & 6,727 & 18.4 & \(4.33 \%\) \\
6 & \begin{tabular}{l} 
+ vectorization
\end{tabular} & 1.10 & 124.914 & 23,224 & 3.5 & \(14.96 \%\) \\
7 & + AVX intrinsics & 0.41 & 337.812 & 62,806 & 2.7 & \(40.45 \%\) \\
8 & Strassen & 0.38 & 361.177 & 67,150 & 1.1 & \(43.24 \%\)
\end{tabular}```

