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4k-by-4k Matrix Multiplication
Version Implementation Running 

time (s) GFLOPS Absolute 
speedup

Relative 
speedup

Fraction of 
peak

1 Python 25,552.48 0.005 1 — 0.00%

2 Java 2,372.68 0.058 11 10.8 0.01%

3 C 542.67 0.253 47 4.4 0.03%

4 Parallel loops 69.80 1.969 366 7.8 0.24%

5 Parallel divide-
and-conquer 3.80 36.180 6,727 18.4 4.33%

6 + vectorization 1.10 124.914 23,224 3.5 14.96%

7 + AVX intrinsics 0.41 337.812 62,806 2.7 40.45%

8 Strassen 0.38 361.177 67,150 1.1 43.24%
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Today, we’ll look into the 
performance engineering 

behind versions 3–7.



Outline

❖ The matrix multiplication problem

❖ Serial and parallel looping codes

❖ Cache-efficient matrix multiplication

❖ Hands-on: Vectorization using the compiler

❖ Vectorization by hand
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Matrix Multiplication
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Problem: Compute the product C = (cij) of two n ⨉ n 
matrices A = (aij) and B = (bij).

The matrix product obeys the following formula:

cij =
nX

k=1

aikbkj

For simplicity, we shall assume that n is a power of 2.



Three Nested Loops in C
for (int i = 0; i < n; ++i) { 
  for (int j = 0; j < n; ++j) { 
    for (int k = 0; k < n; ++k) { 
      C[i][j] += A[i][k] * B[k][j]; 
    } 
  } 
}

Work of computation:

❖ n3 iterations

❖ Each iteration performs 
constant work.

Θ(n3) total work.

5

Version Implementation Running 
time (s) GFLOPS Absolute 

speedup
Relative 
speedup

Fraction of 
peak

3 C 542.67 0.253 47 4.4 0.03%

GCC version 5.2.1 with 
-O3 optimization. 



Parallel Loops
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Version Implementation Running 
time (s) GFLOPS Absolute 

speedup
Relative 
speedup

Fraction of 
peak

3 C 542.67 0.253 47 4.4 0.03%

4 Parallel loops 69.80 1.969 366 7.8 0.24%

cilk_for (int i = 0; i < n; ++i) { 
  cilk_for (int j = 0; j < n; ++j) { 
    for (int k = 0; k < n; ++k) { 
      C[i][j] += A[i][k] * B[k][j]; 
    } 
  } 
}

But the machine has 18 cores!
Where’s my 18x speedup!?

Compute each element 
of C in parallel.



Work/Span Analysis of Parallel Loops
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cilk_for (int i = 0; i < n; ++i) { 
  cilk_for (int j = 0; j < n; ++j) { 
    for (int k = 0; k < n; ++k) { 
      C[i][j] += A[i][k] * B[k][j]; 
    } 
  } 
}

❖ Work: T1(n) = Θ(n3)

❖ Span: T∞(n)  
= Θ(log n + log n + n)  
= Θ(n)

❖ Parallelism:  
T1(n)/T∞(n) = Θ(n2)

This code has ample parallelism,  
but still gets poor parallel speedup!



Memory Access Pattern for Looping Code

C A B

= ⨉
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Matrices are stored in row-major order. 

C

A

B

Layout of matrices in memory:



Cache Analysis of Looping Code
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Suppose that n is sufficiently large.  Let B be the size of a cache line.

❖ Computing an element of matrix C involves Θ(n/B) cache misses for 
matrix A and Θ(n) cache misses for matrix B.

❖ No temporal locality on matrix B.  Cache can’t store all of the cache 
lines for one column of matrix B.

❖ Computing each element of matrix C incurs Θ(n) cache misses.

❖ In total, Θ(n3) cache lines are read to compute all of matrix C.

C

A

B

Layout of matrices in memory:



Improving Cache Efficiency

C =

✓
C00 C01

C10 C11

◆
A =

✓
A00 A01

A10 A11

◆
B =

✓
B00 B01

B10 B11

◆

We can improve cache efficiency using a recursive divide-
and-conquer algorithm.
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❖ Imagine each matrix is subdivided into four quadrants.

❖ The matrix product can be expressed recursively in 
terms of 8 products of submatrices:✓
C00 C01

C10 C11

◆
=

✓
A00B00 +A01B10 A00B01 +A01B11

A10B00 +A11B10 A10B01 +A11B11

◆



00 01

10 11

Recursive Divide-And-Conquer
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void mmdac(double *restrict C, 
           double *restrict A, 
           double *restrict B, 
           int size, int n) { 
  if (size <= THRESHOLD) { 
    mmbase(C, A, B, size); 
  } else { 
    int s00 = 0; 
    int s01 = size/2; 
    int s10 = (size/2)*n; 
    int s11 = (size/2)*(n+1); 
    mmdac(C+s00, A+s00, B+s00, size/2, n); 
    mmdac(C+s01, A+s00, B+s01, size/2, n); 
    mmdac(C+s10, A+s10, B+s00, size/2, n); 
    mmdac(C+s11, A+s10, B+s01, size/2, n); 
    mmdac(C+s00, A+s01, B+s10, size/2, n); 
    mmdac(C+s01, A+s01, B+s11, size/2, n); 
    mmdac(C+s10, A+s11, B+s10, size/2, n); 
    mmdac(C+s11, A+s11, B+s11, size/2, n); 
 } 
}

Coarsened 
base case

Computation of 
submatrices

Promise to 
compiler that 
matrices don’t 

alias

Dimension of 
original 
matrices

Recursive calls

Submatrices Dimension of 
submatrices



Analysis of Recursive Divide-And-Conquer

Work of computation:

❖ Recurrence:  
T(n) = 8T(n/2) + Θ(1)

❖ Solve the recurrence via 
the Master Method:  
T(n) = Θ(n3)

void mmdac(double *restrict C, 
           double *restrict A, 
           double *restrict B, 
           int size, int n) { 
  if (size <= THRESHOLD) { 
    mmbase(C, A, B, size); 
  } else { 
    int s00 = 0; 
    int s01 = size/2; 
    int s10 = (size/2)*n; 
    int s11 = (size/2)*(n+1); 
    mmdac(C+s00, A+s00, B+s00, size/2, n); 
    mmdac(C+s01, A+s00, B+s01, size/2, n); 
    mmdac(C+s10, A+s10, B+s00, size/2, n); 
    mmdac(C+s11, A+s10, B+s01, size/2, n); 
    mmdac(C+s00, A+s01, B+s10, size/2, n); 
    mmdac(C+s01, A+s01, B+s11, size/2, n); 
    mmdac(C+s10, A+s11, B+s10, size/2, n); 
    mmdac(C+s11, A+s11, B+s11, size/2, n); 
 } 
}
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Analysis of Recursive Divide-And-Conquer
Cache complexity: Let M be 
the cache size and B the size 
of a cache line.  Assume the 
base case size fits in cache.

❖ Base case incurs  
Θ(n2/B) cache misses.

❖ Recursive case incurs 
Q(n) = 8Q(n/2) + Θ(1) 
cache misses.

❖ Solution:  
Q(n) = Θ(n3/M1/2B)

void mmdac(double *restrict C, 
           double *restrict A, 
           double *restrict B, 
           int size, int n) { 
  if (size <= THRESHOLD) { 
    mmbase(C, A, B, size); 
  } else { 
    int s00 = 0; 
    int s01 = size/2; 
    int s10 = (size/2)*n; 
    int s11 = (size/2)*(n+1); 
    mmdac(C+s00, A+s00, B+s00, size/2, n); 
    mmdac(C+s01, A+s00, B+s01, size/2, n); 
    mmdac(C+s10, A+s10, B+s00, size/2, n); 
    mmdac(C+s11, A+s10, B+s01, size/2, n); 
    mmdac(C+s00, A+s01, B+s10, size/2, n); 
    mmdac(C+s01, A+s01, B+s11, size/2, n); 
    mmdac(C+s10, A+s11, B+s10, size/2, n); 
    mmdac(C+s11, A+s11, B+s11, size/2, n); 
 } 
}
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Significant 
improvement over 
Θ(n3) misses from 

looping code.



Parallel Divide-And-Conquer
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void mmdac(double *restrict C, double *restrict A, 
    double *restrict B, int size, int n) { 
  if (size <= THRESHOLD) { 
    mmbase(C, A, B, size); 
  } else { 
    int s00 = 0; 
    int s01 = size/2; 
    int s10 = (size/2)*n; 
    int s11 = (size/2)*(n+1); 
    cilk_spawn mmdac(C+s00, A+s00, B+s00, size/2, n); 
    cilk_spawn mmdac(C+s01, A+s00, B+s01, size/2, n); 
    cilk_spawn mmdac(C+s10, A+s10, B+s00, size/2, n); 
               mmdac(C+s11, A+s10, B+s01, size/2, n); 
    cilk_sync; 
    cilk_spawn mmdac(C+s00, A+s01, B+s10, size/2, n); 
    cilk_spawn mmdac(C+s01, A+s01, B+s11, size/2, n); 
    cilk_spawn mmdac(C+s10, A+s11, B+s10, size/2, n); 
               mmdac(C+s11, A+s11, B+s11, size/2, n); 
    cilk_sync; 
  } 
}

Work: 
T1(n) = Θ(n3)

Span:

Recurrence:  
T∞(n)  
= 2T∞(n/2) + Θ(1)

Solution:  
T∞(n) = Θ(n)

This code has 
ample parallelism.



Performance of Parallel Divide-And-Conquer

Version Implementation Running 
time (s) GFLOPS Absolute 

speedup
Relative 
speedup

Fraction of 
peak

3 C 542.67 0.253 47 4.4 0.03%

4 Parallel loops 69.80 1.969 366 7.8 0.24%

5 Parallel divide-
and-conquer 3.80 36.180 6,727 18.4 4.33%
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Where To Optimize Next?
Work of computation:

❖ Write the recurrence:  
T(n) = 8T(n/2) + Θ(1)

❖ Solve the recurrence via 
Master Method:  
T(n) = Θ(n3)

void mmdac(double *restrict C, 
           double *restrict A, 
           double *restrict B, 
           int size, int n) { 
  if (size <= THRESHOLD) { 
    mmbase(C, A, B, size); 
  } else { 
    int s00 = 0; 
    int s01 = size/2; 
    int s10 = (size/2)*n; 
    int s11 = (size/2)*(n+1); 
    mmdac(C+s00, A+s00, B+s00, size/2, n); 
    mmdac(C+s01, A+s00, B+s01, size/2, n); 
    mmdac(C+s10, A+s10, B+s00, size/2, n); 
    mmdac(C+s11, A+s10, B+s01, size/2, n); 
    mmdac(C+s00, A+s01, B+s10, size/2, n); 
    mmdac(C+s01, A+s01, B+s11, size/2, n); 
    mmdac(C+s10, A+s11, B+s10, size/2, n); 
    mmdac(C+s11, A+s11, B+s11, size/2, n); 
 } 
}
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Practically all of the 
work is in the base case!



Hands-On: Implement the Base Case

❖ Download mm_dac.c: 
http://pastebin.com/dl 
/MSmqi5Bq 

❖ Implement a simple  
base case. 

❖ Compile the code:  
$ clang -O3 -g -fcilkplus -o mm_dac mm_dac.c

❖ Run it!
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void mmbase(double *restrict C, 
            double *restrict A, 
            double *restrict B, 
            int size) { 
  for (int i = 0; i < size; ++i) { 
    for (int j = 0; j < size; ++j) { 
      for (int k = 0; k < size; ++k) { 
        C[i*n+j] += A[i*n+k] * B[k*n+j]; 
      } 
    } 
  } 
}

http://pastebin.com/dl


Hands-On: Vectorization Report

Is this compiler vectorizing your code?

❖ Add the flags -Rpass=vector and 
-Rpass-analysis=vector to your clang arguments to get 
a vectorization report.

❖ What does the report say?
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For more on LLVM’s -Rpass flag, see http://blog.llvm.org/2014/11/loop-vectorization-
diagnostics-and.html.

http://blog.llvm.org/2014/11/loop-vectorization-diagnostics-and.html
http://blog.llvm.org/2014/11/loop-vectorization-diagnostics-and.html


IEEE Floating-Point Arithmetic

IEEE floating-point arithmetic is not associative.

❖ The statement printf(“%.17f”, (0.1+0.2)+0.3); 
produces 0.60000000000000009.

❖ The statement printf(“%.17f”, 0.1+(0.2+0.3)); 
produces 0.59999999999999998.

The compiler must assume that you care about this 
imprecision and therefore cannot reorder the floating-
point operations in order to vectorize.
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Hands-On: Vectorization, Attempt 1

We don’t care about this level of precision in the code’s 
floating-point arithmetic, so let’s add the -ffast-math flag 
to clang command.

❖ Is the performance any better?

❖ What does the vectorization report say now?
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Why Didn’t It Vectorize?
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C A B

= ⨉

LLVM does not deem it efficient to vectorize the innermost 
loop, which reads a column of matrix B.



Hands-On: Vectorization, Attempt 2
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Here are two strategies you can try for fixing this problem:

C A BT

= ⨉

C A B

= ⨉

1. Transpose  
matrix B.

2. Interchange  
the loops.

Resulting vectorizable access patternStrategy



AVX Vector Instructions
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Modern Intel processors support the AVX vector 
instruction set.

❖ AVX supports 256-bit vector registers, whereas the 
older SSE instruction set supports 128-bit vector 
registers.

❖ Many common AVX instructions operate on 3 operands, 
rather than 2, making them easier to use.



Hands-On: Vectorization, Attempt 3
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Once you have code that vectorizes, try using the AVX 
instructions, which can operate on 4 elements each.

❖ Add the -mavx flag to your clang command.

❖ What does the vectorizer report say now?

❖ Did you get a performance increase?



Performance With Vectorization
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Version Implementation Running 
time (s) GFLOPS Absolute 

speedup
Relative 
speedup

Fraction of 
peak

3 C 542.67 0.253 47 4.4 0.03%

4 Parallel loops 69.80 1.969 366 7.8 0.24%

5 Parallel divide-
and-conquer 3.80 36.180 6,727 18.4 4.33%

6 + vectorization 1.10 124.914 23,224 3.5 14.96%

How do we go even faster?



Vector Intrinsics
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Intel provides a library of intrinsic instructions for 
accessing their various vector instruction sets.

❖ C/C++ header: immintrin.h 

❖ Database of vector intrinsic instructions:  
https://software.intel.com/sites/landingpage/
IntrinsicsGuide/

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/


Some Useful AVX/AVX2 Instructions
If we stare at this database and think creatively, we come up 
with an alternative base case for matrix multiplication!

❖ The __m256d type stores a vector of 4 doubles.

❖ The AVX intrinsics _mm256_add_pd() and _mm256_mul_pd() 
perform addition and multiplication.

❖ The AVX2 intrinsic _mm256_fmadd_pd() performs a fused 
multiply-add.

❖ The AVX intrinsics _mm256_permute_pd() and 
_mm256_permute2f128_pd() permute AVX registers.
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Outer Product Base Case
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C A B

= ⨉

Idea: Compute outer products between subcolumns of 
matrix A by subrows of matrix B.

Store each subcolumn or 
subrow in 1 vector register.

Outer product produces a 
submatrix of C.

Store intermediate 
submatrix of C in 4 

vector registers.



Computing One Outer Product

20 31

0

2

1

3

C a b

= ⨉
0

1

2
3

02 13

0

2

1

3

C a p2(b)

= ⨉
0

1

2
3
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Compute 4 vector multiplications between the subcolumn 
of matrix A and the subrow of matrix B.

20 31

1

3

0

2

C p1(a) b

= ⨉
1

0

3
2

02 13

1

3

0

2

C p1(a) p2(b)

= ⨉
1

0

3
2

Vector 
permutations



Computing a Whole Submatrix
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0

1

2
3

0

1

2
3

1

0

3
2

1

0

3
2

Computed products

❖ Iterate through subcolumns of A and 
subrows of B to compute a submatrix 
of C.

❖ Accumulate elements of C submatrix 
in separate vector registers.

❖ Once done, write C submatrix back to 
memory.

❖ All operations are element-wise!



Why Is This Base Case Fast?
The whole base case can be implemented within vector 
registers using a few vector operations.

❖ 2 AVX registers to store a subcolumn of A and its 
permutation.

❖ 2 AVX registers to store a subrow of B and its permutation.

❖ 4 AVX registers to store a submatrix of C.

❖ 2 vector permutation operations.

❖ 4 vector multiplication and addition operations per subrow-
subcolumn pair.
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4k-by-4k Matrix Multiplication
Version Implementation Running 

time (s) GFLOPS Absolute 
speedup

Relative 
speedup

Fraction of 
peak

1 Python 25,552.48 0.005 1 — 0.00%

2 Java 2,372.68 0.058 11 10.8 0.01%

3 C 542.67 0.253 47 4.4 0.03%

4 Parallel loops 69.80 1.969 366 7.8 0.24%

5 Parallel divide-
and-conquer 3.80 36.180 6,727 18.4 4.33%

6 + vectorization 1.10 124.914 23,224 3.5 14.96%

7 + AVX intrinsics 0.41 337.812 62,806 2.7 40.45%

8 Strassen 0.38 361.177 67,150 1.1 43.24%
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