Case Study: Matrix Multiplication

6.S898: Advanced Performance Engineering for Multicore Applications February 22, 2017

4k-by-4k Matrix Multiplication

Version	Implementation	Running time (s)	GFLOPS	Absolute speedup	Relative speedup	Fraction of peak
1	Python	25,552.48	0.005	1		0.00%
2	Java	2,372.68	0.058	11	10.8	0.01%
3	С	542.67	0.253	47	4.4	0.03%
4	Parallel loops	69.80	1.969	Today, w	o'11 look	into the
5	Parallel divide- and-conquer	3.80	36.180	performa	ineering	
6	+ vectorization	1.10	124.914	behind	d version	s 3–7.
7	+ AVX intrinsics	0.41	337.812	62,806	2.7	40.45%
8	Strassen	0.38	361.177	67,150	1.1	43.24%

Outline

- * The matrix multiplication problem
- Serial and parallel looping codes
- Cache-efficient matrix multiplication
- * Hands-on: Vectorization using the compiler
- Vectorization by hand

Matrix Multiplication

Problem: Compute the product $C = (c_{ij})$ of two $n \times n$ matrices $A = (a_{ij})$ and $B = (b_{ij})$.

The matrix product obeys the following formula:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

For simplicity, we shall assume that *n* is a power of 2.

Three Nested Loops in C

Work of computation:

- * *n*³ iterations
- Each iteration performs constant work.

GCC version 5.2.1 with -O3 optimization.			$\Theta(n^3)$ total work.				
Version	Implementation	Running time (s)	GFLOPS	Absolute speedup	Relative speedup	Fraction of peak	
3	С	542.67	0.253	47	4.4	0.03%	

Parallel Loops

cilk_for (int i = 0; i < n; ++i) {
 cilk_for (int j = 0; j < n; ++j) {
 for (int k = 0; k < n; ++k) {
 C[i][j] += A[i][k] * B[k][j];
 }</pre>

}

}

Compute each element of C in parallel.

Version	Implementation	Running time (s)	GFLOPS	Absolute speedup	Relative speedup	Fraction of peak
3	С	542.67	0.253	47	4.4	0.03%
4	Parallel loops	69.80	1.969	366	7.8	0.24%
			machine ł ′s my 18x			

Work/Span Analysis of Parallel Loops

* **Work:** $T_1(n) = \Theta(n^3)$

This code has **ample** parallelism, but still gets **poor** parallel speedup!

Memory Access Pattern for Looping Code

Matrices are stored in row-major order.

Layout of matrices in memory:

Cache Analysis of Looping Code

Layout of matrices in memory:

Suppose that *n* is sufficiently large. Let *B* be the size of a cache line.

- * Computing an element of matrix C involves $\Theta(n/B)$ cache misses for matrix A and $\Theta(n)$ cache misses for matrix B.
- * **No temporal locality** on matrix B. Cache can't store all of the cache lines for one column of matrix B.
- * Computing each element of matrix C incurs $\Theta(n)$ cache misses.
- * In total, $\Theta(n^3)$ cache lines are read to compute all of matrix C.

Improving Cache Efficiency

We can improve cache efficiency using a **recursive divideand-conquer** algorithm.

* Imagine each matrix is subdivided into four quadrants.

$$C = \begin{pmatrix} C_{00} & C_{01} \\ C_{10} & C_{11} \end{pmatrix} \quad A = \begin{pmatrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{pmatrix} \quad B = \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}$$

 The matrix product can be expressed recursively in terms of 8 products of submatrices:

 $\begin{pmatrix} C_{00} & C_{01} \\ C_{10} & C_{11} \end{pmatrix} = \begin{pmatrix} A_{00}B_{00} + A_{01}B_{10} & A_{00}B_{01} + A_{01}B_{11} \\ A_{10}B_{00} + A_{11}B_{10} & A_{10}B_{01} + A_{11}B_{11} \end{pmatrix}$

Recursive Divide-And-Conquer

Analysis of Recursive Divide-And-Conquer

```
void mmdac(double *restrict C,
          double *restrict A,
          double *restrict B,
          int size, int n) {
 if (size <= THRESHOLD) {</pre>
   mmbase(C, A, B, size);
 } else {
   int s00 = 0;
   int s01 = size/2;
   int s10 = (size/2)*n;
   int s11 = (size/2)*(n+1);
   mmdac(C+s00, A+s00, B+s00, size/2, n);
   mmdac(C+s01, A+s00, B+s01, size/2, n);
   mmdac(C+s10, A+s10, B+s00, size/2, n);
   mmdac(C+s11, A+s10, B+s01, size/2, n);
   mmdac(C+s00, A+s01, B+s10, size/2, n);
   mmdac(C+s01, A+s01, B+s11, size/2, n);
   mmdac(C+s10, A+s11, B+s10, size/2, n);
   mmdac(C+s11, A+s11, B+s11, size/2, n);
}
```

Work of computation:

• Recurrence: $T(n) = 8T(n/2) + \Theta(1)$

* Solve the recurrence via the Master Method: $T(n) = \Theta(n^3)$

Analysis of Recursive Divide-And-Conquer

```
void mmdac(double *restrict C,
          double *restrict A,
          double *restrict B,
          int size, int n) {
 if (size <= THRESHOLD) {</pre>
   mmbase(C, A, B, size);
 } else {
   int s00 = 0;
   int s01 = size/2;
   int s10 = (size/2)*n;
   int s11 = (size/2)*(n+1);
   mmdac(C+s00, A+s00, B+s00, size/2, n);
   mmdac(C+s01, A+s00, B+s01, size/2, n);
   mmdac(C+s10, A+s10, B+s00, size/2, n);
   mmdac(C+s11, A+s10, B+s01, size/2, n);
   mmdac(C+s00, A+s01, B+s10, size/2, n);
   mmdac(C+s01, A+s01, B+s11, size/2, n);
   mmdac(C+s10, A+s11, B+s10, size/2, n);
   mmdac(C+s11, A+s11, B+s11, size/2, n);
}
```

Cache complexity: Let *M* be the cache size and *B* the size of a cache line. Assume the base case size fits in cache.

* Base case incurs $\Theta(n^2/B)$ cache misses.

* Recursiv Q(n) = 8cache m

Significant improvement over $\Theta(n^3)$ misses from looping code.

* Solution: $Q(n) = \Theta(n^3/M^{1/2}B)$

Parallel Divide-And-Conquer

<pre>void mmdac(double *restrict C, double *restrict A,</pre>	TAlorila
<pre>mmbase(C, A, B, size);</pre>	Work:
<pre>} else { int s00 = 0; This code has</pre>	$T_1(n) = \Theta(n^3)$
int s01 = size/2; ample parallelism.	
int s10 = (size/2)*n;	Span:
<pre>int s11 = (size/2)*(n+1);</pre>	- r
<pre>cilk_spawn mmdac(C+s00, A+s00, B+s00, size/2, n); cilk_spawn mmdac(C+s01, A+s00, B+s01, size/2, n);</pre>	
<pre>cilk_spawn mmdac(C+s10, A+s10, B+s00, size/2, n); mmdac(C+s11, A+s10, B+s01, size/2, n);</pre>	$T_{\infty}(n)$
<pre>cilk_sync; cilk_spawn mmdac(C+s00, A+s01, B+s10, size/2, n);</pre>	$=2T_{\infty}(n/2)+\Theta(1)$
<pre>cilk_spawn mmdac(C+s01, A+s01, B+s11, size/2, n);</pre>	
cilk_spawn mmdac(C+s10, A+s11, B+s10, size/2, n); mmdac(C+s11, A+s11, B+s11, size/2, n);	Solution:
cilk_sync;	$T_{\infty}(n) = \Theta(n)$
ر ۲	

Performance of Parallel Divide-And-Conquer

Version	Implementation	Running time (s)	GFLOPS	Absolute speedup	Relative speedup	Fraction of peak
3	С	542.67	0.253	47	4.4	0.03%
4	Parallel loops	69.80	1.969	366	7.8	0.24%
5	Parallel divide- and-conquer	3.80	36.180	6,727	18.4	4.33%

Where To Optimize Next?

```
void mmdac(double *restrict C,
          double *restrict A,
          double *restrict B,
          int size, int n) {
 if (size <= THRESHOLD) {</pre>
   mmbase(C, A, B, size);
 } else {
   int s00 = 0;
   int s01 = size/2;
   int s10 = (size/2)*n;
   int s11 = (size/2)*(n+1);
   mmdac(C+s00, A+s00, B+s00, size/2, n);
   mmdac(C+s01, A+s00, B+s01, size/2, n);
   mmdac(C+s10, A+s10, B+s00, size/2, n);
   mmdac(C+s11, A+s10, B+s01, size/2, n);
   mmdac(C+s00, A+s01, B+s10, size/2, n);
   mmdac(C+s01, A+s01, B+s11, size/2, n);
   mmdac(C+s10, A+s11, B+s10, size/2, n);
   mmdac(C+s11, A+s11, B+s11, size/2, n);
}
```

Work of computation:

- * Write the recurrence: $T(n) = 8T(n/2) + \Theta(1)$
- * Solve the recurrence via Master Method: $T(n) = \Theta(n^3)$

Practically all of the work is in the **base case!**

16

Hands-On: Implement the Base Case

- Download mm_dac.c: <u>http://pastebin.com/dl</u> /MSmqi5Bq
- Implement a simple base case.

- * Compile the code: \$ clang -03 -g -fcilkplus -o mm_dac mm_dac.c
- * Run it!

Hands-On: Vectorization Report

Is this compiler vectorizing your code?

- Add the flags -Rpass=vector and
 -Rpass-analysis=vector to your clang arguments to get a vectorization report.
- * What does the report say?

For more on LLVM's -Rpass flag, see <u>http://blog.llvm.org/2014/11/loop-vectorization-</u> <u>diagnostics-and.html</u>.

IEEE Floating-Point Arithmetic

IEEE floating-point arithmetic is **not associative**.

- * The statement printf("%.17f", (0.1+0.2)+0.3); produces 0.600000000000000009.
- * The statement printf("%.17f", 0.1+(0.2+0.3)); produces 0.59999999999999998.

The compiler must assume that you care about this imprecision and therefore cannot reorder the floating-point operations in order to vectorize.

Hands-On: Vectorization, Attempt 1

We don't care about this level of precision in the code's floating-point arithmetic, so let's add the -ffast-math flag to clang command.

- * Is the performance any better?
- * What does the vectorization report say now?

Why Didn't It Vectorize?

LLVM does not deem it efficient to vectorize the innermost loop, which reads a column of matrix B.

Hands-On: Vectorization, Attempt 2

Here are two strategies you can try for fixing this problem:

AVX Vector Instructions

Modern Intel processors support the AVX vector instruction set.

- AVX supports 256-bit vector registers, whereas the older SSE instruction set supports 128-bit vector registers.
- Many common AVX instructions operate on 3 operands, rather than 2, making them easier to use.

Hands-On: Vectorization, Attempt 3

Once you have code that vectorizes, try using the AVX instructions, which can operate on 4 elements each.

- * Add the -mavx flag to your clang command.
- * What does the vectorizer report say now?
- * Did you get a performance increase?

Performance With Vectorization

Version	Implementation	Running time (s)	GFLOPS	Absolute speedup	Relative speedup	Fraction of peak
3	С	542.67	0.253	47	4.4	0.03%
4	Parallel loops	69.80	1.969	366	7.8	0.24%
5	Parallel divide- and-conquer	3.80	36.180	6,727	18.4	4.33%
6	+ vectorization	1.10	124.914	23,224	3.5	14.96%

How do we go even faster?

Vector Intrinsics

Intel provides a library of intrinsic instructions for accessing their various vector instruction sets.

- * C/C++ header: immintrin.h
- * Database of vector intrinsic instructions: <u>https://software.intel.com/sites/landingpage/</u> <u>IntrinsicsGuide/</u>

Some Useful AVX/AVX2 Instructions

If we stare at this database and think creatively, we come up with an alternative base case for matrix multiplication!

- * The __m256d type stores a vector of 4 doubles.
- The AVX intrinsics _mm256_add_pd() and _mm256_mul_pd()
 perform addition and multiplication.
- The AVX2 intrinsic _mm256_fmadd_pd() performs a fused multiply-add.
- * The AVX intrinsics _mm256_permute_pd() and _mm256_permute2f128_pd() permute AVX registers.

Outer Product Base Case

Idea: Compute outer products between subcolumns of matrix A by subrows of matrix B.

Outer product produces a submatrix of C.

Store each subcolumn or subrow in 1 vector register.

Computing One Outer Product

Compute 4 vector multiplications between the subcolumn of matrix A and the subrow of matrix B. Vector

Computing a Whole Submatrix

- 0
- Iterate through subcolumns of A and subrows of B to compute a submatrix of C.
- Accumulate elements of C submatrix in separate vector registers.

- Once done, write C submatrix back to memory.
- * All operations are element-wise!

Why Is This Base Case Fast?

The whole base case can be implemented within vector registers using a few vector operations.

- 2 AVX registers to store a subcolumn of A and its permutation.
- * 2 AVX registers to store a subrow of B and its permutation.
- * 4 AVX registers to store a submatrix of C.
- * 2 vector permutation operations.
- * 4 vector multiplication and addition operations per subrowsubcolumn pair.

4k-by-4k Matrix Multiplication

Version	Implementation	Running time (s)	GFLOPS	Absolute speedup	Relative speedup	Fraction of peak
1	Python	25,552.48	0.005	1		0.00%
2	Java	2,372.68	0.058	11	10.8	0.01%
3	С	542.67	0.253	47	4.4	0.03%
4	Parallel loops	69.80	1.969	366	7.8	0.24%
5	Parallel divide- and-conquer	3.80	36.180	6,727	18.4	4.33%
6	+ vectorization	1.10	124.914	23,224	3.5	14.96%
7	+ AVX intrinsics	0.41	337.812	62,806	2.7	40.45%
8	Strassen	0.38	361.177	67,150	1.1	43.24%