
Case Study: Matrix Multiplication

6.S898: Advanced Performance Engineering for Multicore Applications
February 22, 2017

1

4k-by-4k Matrix Multiplication
Version Implementation Running

time (s) GFLOPS Absolute
speedup

Relative
speedup

Fraction of
peak

1 Python 25,552.48 0.005 1 — 0.00%

2 Java 2,372.68 0.058 11 10.8 0.01%

3 C 542.67 0.253 47 4.4 0.03%

4 Parallel loops 69.80 1.969 366 7.8 0.24%

5 Parallel divide-
and-conquer 3.80 36.180 6,727 18.4 4.33%

6 + vectorization 1.10 124.914 23,224 3.5 14.96%

7 + AVX intrinsics 0.41 337.812 62,806 2.7 40.45%

8 Strassen 0.38 361.177 67,150 1.1 43.24%

2

Today, we’ll look into the
performance engineering

behind versions 3–7.

Outline

❖ The matrix multiplication problem

❖ Serial and parallel looping codes

❖ Cache-efficient matrix multiplication

❖ Hands-on: Vectorization using the compiler

❖ Vectorization by hand

3

Matrix Multiplication

4

Problem: Compute the product C = (cij) of two n ⨉ n
matrices A = (aij) and B = (bij).

The matrix product obeys the following formula:

cij =
nX

k=1

aikbkj

For simplicity, we shall assume that n is a power of 2.

Three Nested Loops in C
for (int i = 0; i < n; ++i) {
 for (int j = 0; j < n; ++j) {
 for (int k = 0; k < n; ++k) {
 C[i][j] += A[i][k] * B[k][j];
 }
 }
}

Work of computation:

❖ n3 iterations

❖ Each iteration performs
constant work.

Θ(n3) total work.

5

Version Implementation Running
time (s) GFLOPS Absolute

speedup
Relative
speedup

Fraction of
peak

3 C 542.67 0.253 47 4.4 0.03%

GCC version 5.2.1 with
-O3 optimization.

Parallel Loops

6

Version Implementation Running
time (s) GFLOPS Absolute

speedup
Relative
speedup

Fraction of
peak

3 C 542.67 0.253 47 4.4 0.03%

4 Parallel loops 69.80 1.969 366 7.8 0.24%

cilk_for (int i = 0; i < n; ++i) {
 cilk_for (int j = 0; j < n; ++j) {
 for (int k = 0; k < n; ++k) {
 C[i][j] += A[i][k] * B[k][j];
 }
 }
}

But the machine has 18 cores!
Where’s my 18x speedup!?

Compute each element
of C in parallel.

Work/Span Analysis of Parallel Loops

7

cilk_for (int i = 0; i < n; ++i) {
 cilk_for (int j = 0; j < n; ++j) {
 for (int k = 0; k < n; ++k) {
 C[i][j] += A[i][k] * B[k][j];
 }
 }
}

❖ Work: T1(n) = Θ(n3)

❖ Span: T∞(n)  
= Θ(log n + log n + n)  
= Θ(n)

❖ Parallelism:  
T1(n)/T∞(n) = Θ(n2)

This code has ample parallelism,  
but still gets poor parallel speedup!

Memory Access Pattern for Looping Code

C A B

= ⨉

8

Matrices are stored in row-major order.

C

A

B

Layout of matrices in memory:

Cache Analysis of Looping Code

9

Suppose that n is sufficiently large. Let B be the size of a cache line.

❖ Computing an element of matrix C involves Θ(n/B) cache misses for
matrix A and Θ(n) cache misses for matrix B.

❖ No temporal locality on matrix B. Cache can’t store all of the cache
lines for one column of matrix B.

❖ Computing each element of matrix C incurs Θ(n) cache misses.

❖ In total, Θ(n3) cache lines are read to compute all of matrix C.

C

A

B

Layout of matrices in memory:

Improving Cache Efficiency

C =

✓
C00 C01

C10 C11

◆
A =

✓
A00 A01

A10 A11

◆
B =

✓
B00 B01

B10 B11

◆

We can improve cache efficiency using a recursive divide-
and-conquer algorithm.

10

❖ Imagine each matrix is subdivided into four quadrants.

❖ The matrix product can be expressed recursively in
terms of 8 products of submatrices:✓
C00 C01

C10 C11

◆
=

✓
A00B00 +A01B10 A00B01 +A01B11

A10B00 +A11B10 A10B01 +A11B11

◆

00 01

10 11

Recursive Divide-And-Conquer

11

void mmdac(double *restrict C,
 double *restrict A,
 double *restrict B,
 int size, int n) {
 if (size <= THRESHOLD) {
 mmbase(C, A, B, size);
 } else {
 int s00 = 0;
 int s01 = size/2;
 int s10 = (size/2)*n;
 int s11 = (size/2)*(n+1);
 mmdac(C+s00, A+s00, B+s00, size/2, n);
 mmdac(C+s01, A+s00, B+s01, size/2, n);
 mmdac(C+s10, A+s10, B+s00, size/2, n);
 mmdac(C+s11, A+s10, B+s01, size/2, n);
 mmdac(C+s00, A+s01, B+s10, size/2, n);
 mmdac(C+s01, A+s01, B+s11, size/2, n);
 mmdac(C+s10, A+s11, B+s10, size/2, n);
 mmdac(C+s11, A+s11, B+s11, size/2, n);
 }
}

Coarsened
base case

Computation of
submatrices

Promise to
compiler that
matrices don’t

alias

Dimension of
original
matrices

Recursive calls

Submatrices Dimension of
submatrices

Analysis of Recursive Divide-And-Conquer

Work of computation:

❖ Recurrence:  
T(n) = 8T(n/2) + Θ(1)

❖ Solve the recurrence via
the Master Method:  
T(n) = Θ(n3)

void mmdac(double *restrict C,
 double *restrict A,
 double *restrict B,
 int size, int n) {
 if (size <= THRESHOLD) {
 mmbase(C, A, B, size);
 } else {
 int s00 = 0;
 int s01 = size/2;
 int s10 = (size/2)*n;
 int s11 = (size/2)*(n+1);
 mmdac(C+s00, A+s00, B+s00, size/2, n);
 mmdac(C+s01, A+s00, B+s01, size/2, n);
 mmdac(C+s10, A+s10, B+s00, size/2, n);
 mmdac(C+s11, A+s10, B+s01, size/2, n);
 mmdac(C+s00, A+s01, B+s10, size/2, n);
 mmdac(C+s01, A+s01, B+s11, size/2, n);
 mmdac(C+s10, A+s11, B+s10, size/2, n);
 mmdac(C+s11, A+s11, B+s11, size/2, n);
 }
}

12

Analysis of Recursive Divide-And-Conquer
Cache complexity: Let M be
the cache size and B the size
of a cache line. Assume the
base case size fits in cache.

❖ Base case incurs  
Θ(n2/B) cache misses.

❖ Recursive case incurs
Q(n) = 8Q(n/2) + Θ(1)
cache misses.

❖ Solution:  
Q(n) = Θ(n3/M1/2B)

void mmdac(double *restrict C,
 double *restrict A,
 double *restrict B,
 int size, int n) {
 if (size <= THRESHOLD) {
 mmbase(C, A, B, size);
 } else {
 int s00 = 0;
 int s01 = size/2;
 int s10 = (size/2)*n;
 int s11 = (size/2)*(n+1);
 mmdac(C+s00, A+s00, B+s00, size/2, n);
 mmdac(C+s01, A+s00, B+s01, size/2, n);
 mmdac(C+s10, A+s10, B+s00, size/2, n);
 mmdac(C+s11, A+s10, B+s01, size/2, n);
 mmdac(C+s00, A+s01, B+s10, size/2, n);
 mmdac(C+s01, A+s01, B+s11, size/2, n);
 mmdac(C+s10, A+s11, B+s10, size/2, n);
 mmdac(C+s11, A+s11, B+s11, size/2, n);
 }
}

13

Significant
improvement over
Θ(n3) misses from

looping code.

Parallel Divide-And-Conquer

14

void mmdac(double *restrict C, double *restrict A,
 double *restrict B, int size, int n) {
 if (size <= THRESHOLD) {
 mmbase(C, A, B, size);
 } else {
 int s00 = 0;
 int s01 = size/2;
 int s10 = (size/2)*n;
 int s11 = (size/2)*(n+1);
 cilk_spawn mmdac(C+s00, A+s00, B+s00, size/2, n);
 cilk_spawn mmdac(C+s01, A+s00, B+s01, size/2, n);
 cilk_spawn mmdac(C+s10, A+s10, B+s00, size/2, n);
 mmdac(C+s11, A+s10, B+s01, size/2, n);
 cilk_sync;
 cilk_spawn mmdac(C+s00, A+s01, B+s10, size/2, n);
 cilk_spawn mmdac(C+s01, A+s01, B+s11, size/2, n);
 cilk_spawn mmdac(C+s10, A+s11, B+s10, size/2, n);
 mmdac(C+s11, A+s11, B+s11, size/2, n);
 cilk_sync;
 }
}

Work: 
T1(n) = Θ(n3)

Span:

Recurrence:  
T∞(n)  
= 2T∞(n/2) + Θ(1)

Solution:  
T∞(n) = Θ(n)

This code has
ample parallelism.

Performance of Parallel Divide-And-Conquer

Version Implementation Running
time (s) GFLOPS Absolute

speedup
Relative
speedup

Fraction of
peak

3 C 542.67 0.253 47 4.4 0.03%

4 Parallel loops 69.80 1.969 366 7.8 0.24%

5 Parallel divide-
and-conquer 3.80 36.180 6,727 18.4 4.33%

15

Where To Optimize Next?
Work of computation:

❖ Write the recurrence:  
T(n) = 8T(n/2) + Θ(1)

❖ Solve the recurrence via
Master Method:  
T(n) = Θ(n3)

void mmdac(double *restrict C,
 double *restrict A,
 double *restrict B,
 int size, int n) {
 if (size <= THRESHOLD) {
 mmbase(C, A, B, size);
 } else {
 int s00 = 0;
 int s01 = size/2;
 int s10 = (size/2)*n;
 int s11 = (size/2)*(n+1);
 mmdac(C+s00, A+s00, B+s00, size/2, n);
 mmdac(C+s01, A+s00, B+s01, size/2, n);
 mmdac(C+s10, A+s10, B+s00, size/2, n);
 mmdac(C+s11, A+s10, B+s01, size/2, n);
 mmdac(C+s00, A+s01, B+s10, size/2, n);
 mmdac(C+s01, A+s01, B+s11, size/2, n);
 mmdac(C+s10, A+s11, B+s10, size/2, n);
 mmdac(C+s11, A+s11, B+s11, size/2, n);
 }
}

16

Practically all of the
work is in the base case!

Hands-On: Implement the Base Case

❖ Download mm_dac.c: 
http://pastebin.com/dl 
/MSmqi5Bq

❖ Implement a simple  
base case.

❖ Compile the code:  
$ clang -O3 -g -fcilkplus -o mm_dac mm_dac.c

❖ Run it!

17

void mmbase(double *restrict C,
 double *restrict A,
 double *restrict B,
 int size) {
 for (int i = 0; i < size; ++i) {
 for (int j = 0; j < size; ++j) {
 for (int k = 0; k < size; ++k) {
 C[i*n+j] += A[i*n+k] * B[k*n+j];
 }
 }
 }
}

http://pastebin.com/dl

Hands-On: Vectorization Report

Is this compiler vectorizing your code?

❖ Add the flags -Rpass=vector and 
-Rpass-analysis=vector to your clang arguments to get
a vectorization report.

❖ What does the report say?

18

For more on LLVM’s -Rpass flag, see http://blog.llvm.org/2014/11/loop-vectorization-
diagnostics-and.html.

http://blog.llvm.org/2014/11/loop-vectorization-diagnostics-and.html
http://blog.llvm.org/2014/11/loop-vectorization-diagnostics-and.html

IEEE Floating-Point Arithmetic

IEEE floating-point arithmetic is not associative.

❖ The statement printf(“%.17f”, (0.1+0.2)+0.3);
produces 0.60000000000000009.

❖ The statement printf(“%.17f”, 0.1+(0.2+0.3));
produces 0.59999999999999998.

The compiler must assume that you care about this
imprecision and therefore cannot reorder the floating-
point operations in order to vectorize.

19

Hands-On: Vectorization, Attempt 1

We don’t care about this level of precision in the code’s
floating-point arithmetic, so let’s add the -ffast-math flag
to clang command.

❖ Is the performance any better?

❖ What does the vectorization report say now?

20

Why Didn’t It Vectorize?

21

C A B

= ⨉

LLVM does not deem it efficient to vectorize the innermost
loop, which reads a column of matrix B.

Hands-On: Vectorization, Attempt 2

22

Here are two strategies you can try for fixing this problem:

C A BT

= ⨉

C A B

= ⨉

1. Transpose  
matrix B.

2. Interchange  
the loops.

Resulting vectorizable access patternStrategy

AVX Vector Instructions

23

Modern Intel processors support the AVX vector
instruction set.

❖ AVX supports 256-bit vector registers, whereas the
older SSE instruction set supports 128-bit vector
registers.

❖ Many common AVX instructions operate on 3 operands,
rather than 2, making them easier to use.

Hands-On: Vectorization, Attempt 3

24

Once you have code that vectorizes, try using the AVX
instructions, which can operate on 4 elements each.

❖ Add the -mavx flag to your clang command.

❖ What does the vectorizer report say now?

❖ Did you get a performance increase?

Performance With Vectorization

25

Version Implementation Running
time (s) GFLOPS Absolute

speedup
Relative
speedup

Fraction of
peak

3 C 542.67 0.253 47 4.4 0.03%

4 Parallel loops 69.80 1.969 366 7.8 0.24%

5 Parallel divide-
and-conquer 3.80 36.180 6,727 18.4 4.33%

6 + vectorization 1.10 124.914 23,224 3.5 14.96%

How do we go even faster?

Vector Intrinsics

26

Intel provides a library of intrinsic instructions for
accessing their various vector instruction sets.

❖ C/C++ header: immintrin.h

❖ Database of vector intrinsic instructions:  
https://software.intel.com/sites/landingpage/
IntrinsicsGuide/

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Some Useful AVX/AVX2 Instructions
If we stare at this database and think creatively, we come up
with an alternative base case for matrix multiplication!

❖ The __m256d type stores a vector of 4 doubles.

❖ The AVX intrinsics _mm256_add_pd() and _mm256_mul_pd()
perform addition and multiplication.

❖ The AVX2 intrinsic _mm256_fmadd_pd() performs a fused
multiply-add.

❖ The AVX intrinsics _mm256_permute_pd() and
_mm256_permute2f128_pd() permute AVX registers.

27

Outer Product Base Case

28

C A B

= ⨉

Idea: Compute outer products between subcolumns of
matrix A by subrows of matrix B.

Store each subcolumn or
subrow in 1 vector register.

Outer product produces a
submatrix of C.

Store intermediate
submatrix of C in 4

vector registers.

Computing One Outer Product

20 31

0

2

1

3

C a b

= ⨉
0

1

2
3

02 13

0

2

1

3

C a p2(b)

= ⨉
0

1

2
3

29

Compute 4 vector multiplications between the subcolumn
of matrix A and the subrow of matrix B.

20 31

1

3

0

2

C p1(a) b

= ⨉
1

0

3
2

02 13

1

3

0

2

C p1(a) p2(b)

= ⨉
1

0

3
2

Vector
permutations

Computing a Whole Submatrix

30

0

1

2
3

0

1

2
3

1

0

3
2

1

0

3
2

Computed products

❖ Iterate through subcolumns of A and
subrows of B to compute a submatrix
of C.

❖ Accumulate elements of C submatrix
in separate vector registers.

❖ Once done, write C submatrix back to
memory.

❖ All operations are element-wise!

Why Is This Base Case Fast?
The whole base case can be implemented within vector
registers using a few vector operations.

❖ 2 AVX registers to store a subcolumn of A and its
permutation.

❖ 2 AVX registers to store a subrow of B and its permutation.

❖ 4 AVX registers to store a submatrix of C.

❖ 2 vector permutation operations.

❖ 4 vector multiplication and addition operations per subrow-
subcolumn pair.

31

4k-by-4k Matrix Multiplication
Version Implementation Running

time (s) GFLOPS Absolute
speedup

Relative
speedup

Fraction of
peak

1 Python 25,552.48 0.005 1 — 0.00%

2 Java 2,372.68 0.058 11 10.8 0.01%

3 C 542.67 0.253 47 4.4 0.03%

4 Parallel loops 69.80 1.969 366 7.8 0.24%

5 Parallel divide-
and-conquer 3.80 36.180 6,727 18.4 4.33%

6 + vectorization 1.10 124.914 23,224 3.5 14.96%

7 + AVX intrinsics 0.41 337.812 62,806 2.7 40.45%

8 Strassen 0.38 361.177 67,150 1.1 43.24%

32

