
1

Tao B. Schardl
August 25, 2016

Performance Engineering  
of Multicore Software

Developing a Science of Fast Code  
for the Post-Moore Era

The Problem with Fast Code

Writing fast code is notoriously hard.

2

Writing Fast Code in the 1970’s—80’s

3

Knuth

“Premature optimization is the root of all evil." [K79]

“More computing sins are committed in the
name of efficiency (without necessarily

achieving it) than for any other single reason
— including blind stupidity.” [W79]

“The First Rule of Program Optimization:
Don’t do it.

The Second Rule of Program
Optimization — For experts only:  

Don’t do it yet.” [J88]

Wulf

Jackson

Writing Fast Code Today
Today’s complicated hardware and software systems

make software performance engineering difficult.

4

Intel Skylake processor
Systems on a multicore machine:  
parallel processor cores, vector units,
caches, memory bandwidth, prefetchers,
paging, discs, network bandwidth,
GPU’s, power…

Writing code that uses these systems efficiently in concert
requires substantial expertise and ad hoc knowledge.

Hard Problem: Parallel Programming

5

“[W]hen we start talking about parallelism
and ease of use of truly parallel computers,
we’re talking about a problem as hard as any
that computer science has faced.” [H06]

❖ Parallel programs are hard to reason about and
debug because they behave nondeterministically
due to their concurrent execution.

❖ Parallel program performance is hard to reason
about because it’s measured in terms of
scalability as well execution time.

Hennessy

Just Ignore the Problem?

Programmers today prefer to ignore performance
concerns and just focus on writing simple, correct code.

Will writing fast code forever be too hard for average
programmers to bother doing?

6

No! Moore’s Law is ending!

Thesis Statement
❖ I contend that a science of fast code can be developed to

alleviate the ad hoc and unprincipled aspects of software
performance engineering.

❖ This thesis presents an array of artifacts that enable
principled approaches to dealing with nondeterminism and
scalability concerns in efficient multicore software.

❖ These artifacts develop three core technologies that support
scientific inquiry into the behavior and performance of fast
code: simple programming models, theories of performance
that are borne out in practice, and efficient diagnostic tools.

7

Contributions to a Science of Fast Code

8

Artifact Simple programming
models

Theories of
performance

Efficient diagnostic
tools

PBFS ⚫

DPRNG ⚫

Cilk-P ⚫ ⚫

Prism ⚫

Color ⚫

Cilkprof ⚫

Rader ⚫

Tapir ⚫

CSI ⚫ ⚫

⚫
The artifact primarily supports the
technology enabling a science of fast code.

Content of My Thesis
❖ PBFS

❖ DPRNG

❖ Cilk-P

❖ Prism

❖ Color

❖ Cilkprof

❖ Rader

❖ Tapir

❖ CSI

❖ Life after Moore’s Law

9

Content of This Talk
❖ PBFS

❖ DPRNG

❖ Cilk-P

❖ Prism

❖ Color

❖ Cilkprof

❖ Rader

❖ Tapir

❖ CSI

❖ Life after Moore’s Law

10

Outline

❖ Deterministic parallel random-number generation
(DPRNG)

❖ Life after Moore’s Law

11 Leiserson SukhaSchardl

Randomized Applications

Random numbers are used in a variety of applications, including:
❖ Black Scholes

❖ Computations on social networks

❖ Simulated annealing

❖ Monte Carlo methods

❖ Machine learning (e.g.,
stochastic gradient
descent)

How do we parallelize these applications?

12

Review of Serial RNG’s
❖ Object with state.
❖ Each call to rand updates the

state and returns a
pseudorandom number.

❖ State is initialized with a seed.
❖ The RNG behaves

deterministically for a fixed
seed.

class LCG {
 public:
 LCG()
 : _s(0), _a(1103515245),
 _c(12345), _m(2147483648)
 {}

 int rand() {
 _s = (_a * _s + _c) % _m;
 return _s;
 }

 void seed(unsigned int seed) {
 _s = seed;
 }

 protected:
 int _a, _c;
 unsigned int _m, _s;
};13

Example serial RNG

We want this property for
debugging parallel codes.

Deterministic Parallelism

14

Bocchino Adve

Adve Snir

“Parallel programming must be
deterministic by default.” [BAAS09]

“We should build
from essentially
deterministic,
composable
components.” [L06]

Lee

To address the difficulty of contending with nondeterminism, many
researchers have called for some form of deterministic parallelism.

ShunBlelloch

“Internally deterministic parallel
algorithms can be fast.” [BFGS12]

Fineman Gibbons

Dynamic Multithreading
Dynamic multithreading concurrency platforms (e.g., Cilk [FLR98], DPJ
[BAAS09], Habanero-Java [CZH11], OpenMP [ACD09], Java Fork/Join
Framework [L00], TBB [R07], TPL [LH07]) enable programmers to write
deterministic parallel programs.

Example Cilk code

void pqsort(int64_t array[], size_t n,
 size_t l, size_t h) {
 // ... base case ...
 size_t part;
 part = partition(array, n, l, h);
 cilk_spawn pqsort(array, n, l, part);
 pqsort(array, n, part, h);
 cilk_sync;
}

15

More on this shortly.

DPRNG Contributions [LSS12]

The DotMix DPRNG library produces pseudorandom numbers for
dynamic multithreaded codes.

❖ DotMix is deterministic by making use of the pedigree mechanism.

❖ DotMix produces high-quality numbers — numbers of comparable
statistical quality to the state-of-the-art Mersenne twister [MN98]
RNG.

❖ The DotMix implementation is fast, incurring relatively little
overhead compared to a nondeterministic use of Mersenne twister.

16

Outline
❖ DPRNG

❖ Dynamic multithreading

❖ The DPRNG problem

❖ Pedigrees

❖ DotMix

❖ Evaluation

❖ Life after Moore’s Law

17

void qsort(int64_t array[], size_t n,
 size_t l, size_t h) {
 // ... base case ...
 size_t part;
 part = partition(array, n, l, h);
 qsort(array, n, l, part);
 qsort(array, n, part, h);

}

A Simple Parallel Quicksort

void pqsort(int64_t array[], size_t n,
 size_t l, size_t h) {
 // ... base case ...
 size_t part;
 part = partition(array, n, l, h);
 cilk_spawn pqsort(array, n, l, part);
 pqsort(array, n, part, h);
 cilk_sync;
}

This call to pqsort is allowed
(but not required) to execute in
parallel with its continuation.

Both recursive pqsort calls
must return before control

passes this point.

Example Cilk code

Dynamic multithreading language constructs expose logical
parallelism within a program.

18

Processor-Oblivious Execution Model
void pqsort(int64_t array[], size_t n,
 size_t l, size_t h) {
 // ... base case ...
 size_t part;
 part = partition(array, n, l, h);
 cilk_spawn pqsort(array, n, l, part);
 pqsort(array, n, part, h);
 cilk_sync;
}

pqsort

pqsort

pqsort pqsort

partition

pqsort

partition partition

pqsort

pqsort

pqsort

pqsort

partition

The executed computation
forms a dag embedded in the
function invocation tree.

Strand — serial sequence
of instructions containing

no parallel control

spawn strand

sync strand

parallel control
dependency

function frame
19

Scheduling on Parallel Processors

P1 P2 P3

pqsort

pqsort

pqsort pqsort

partition

pqsort

pqsort

partition partition

pqsort

pqsort

pqsort

pqsort pqsort

partition

pqsort

pqsort

partition partition

pqsort

The runtime system automatically load-balances the program
efficiently on available processors.

P1 P2

If the program contains no
determinacy races, then

every execution is the same,
regardless of scheduling.

20

Outline
❖ DPRNG

❖ Dynamic multithreading

❖ The DPRNG problem

❖ Pedigrees

❖ DotMix

❖ Evaluation

❖ Life after Moore’s Law

21

Randomized Parallel Quicksort
void pqsort(int64_t array[], size_t n,
 size_t l, size_t h) {
 // ... base case ...
 size_t part;
 part = rand_partition(array, n, l, h);
 cilk_spawn pqsort(array, n, l, part);
 pqsort(array, n, part, h);
 cilk_sync;
}

Partition the array
randomly to guarantee
O(n log n) running time
with high probability.

How do we generate the pseudorandom numbers for
rand_partition?

22

Race on accessing RNG leads to
nondeterministic behavior.

Idea 1: Global RNG

P1 P2 P3

pqsort

pqsort

pqsort pqsort

rand_part

pqsort pqsort

rand_part rand_part

pqsort

pqsort

pqsort pqsort

rand_part

44

16 72

pqsort

pqsort

pqsort pqsort

rand_partRNG

pqsort

rand_part

pqsort

rand_part

🔒

44

72 16

4 Race on
calling rand.

23

Nondeterministic scheduling leads
to nondeterministic behavior.

Idea 2: Processor-Local RNG’s

P1 P2 P3

pqsort

pqsort

pqsort pqsort

rand_part

pqsort pqsort

rand_part rand_part

pqsort

pqsort

pqsort

pqsort pqsort

rand_part

pqsort

rand_part

pqsort

rand_part

pqsort

pqsort pqsort

rand_partRNG RNG RNG

44

16 72

44

16 4

98Nondeterministic
scheduling of computation.

24

void pqsort(int64_t array[], size_t n,
 size_t l, size_t h) {
 // ... base case ...
 size_t part;
 part = rand_partition(array, n, l, h);
 cilk_spawn pqsort(array, n, l, part);
 pqsort(array, n, part, h);
 cilk_sync;
}

void pqsort(int64_t array[], size_t n,
 size_t l, size_t h, RNG r) {
 // ... base case ...
 size_t part;
 part = rand_partition(array, n, l, h, r);
 RNG r2 = // ???
 cilk_spawn pqsort(array, n, l, part, r2);
 pqsort(array, n, part, h, r);
 cilk_sync;
}

Idea 3: Spawning RNG’s

25

Create a new RNG object for
each spawned subroutine.

Pass different RNG’s to
appropriate methods.

Assign a different RNG for each spawned subroutine.

Issues:

1. Not obvious how to make many
new RNG’s and still produce
quality pseudorandom numbers.

2. Can’t use a global RNG.

3. Might require extensive code
changes.

Previous Research
Previous research has developed DPRNG’s for Pthreaded
programs:
❖ SPRNG [MS01] is a popular DPRNG that creates

independent RNG’s for different Pthreads via a
parameterization process.

❖ Coddington [C97] surveys alternative RNG-creation
schemes, such as “leapfrogging” and “splitting.”

❖ Salmon et al. [SMDS11] explore the idea of generating parallel
RNG’s via independent transformations of counter values.

26

void pqsort(int64_t array[], size_t n,
 size_t l, size_t h, RNG r) {
 // ... base case ...
 size_t part;
 part = rand_partition(array, n, l, h, r);
 RNG r2 = // ???
 cilk_spawn pqsort(array, n, l, part, r2);
 pqsort(array, n, part, h, r);
 cilk_sync;
}

Idea 3: Spawning RNG’s
Idea: Create a new, independent RNG for each spawned subcomputation.

Problem: When we tried using
SPRNG on a simple recursive
Cilk code, we found that:

❖ SPRNG runs 50,000 times
slower than using Mersenne
twister nondeterministically.

❖ SPRNG could not guarantee
the independence of the
numbers generated for
computations that perform
many spawns.

SPRNG is not designed to handle dynamic multithreaded computations.

void pqsort(int64_t array[], size_t n,
 size_t l, size_t h, SPRNG r) {
 // ... base case ...
 size_t part;
 part = rand_partition(array, n, l, h, r);
 SPRNG r2 = r.spawn();
 cilk_spawn pqsort(array, n, l, part, r2);
 pqsort(array, n, part, h, r);
 cilk_sync;
}

SPRNG [MS01] provides a spawn
routine for creating new RNG’s.

27

Outline
❖ DPRNG

❖ Dynamic multithreading

❖ The DPRNG problem

❖ Pedigrees

❖ DotMix

❖ Evaluation

❖ Life after Moore’s Law

28

Idea 4: The Platform Helps
Idea: If each strand is assigned schedule-independent
coordinates, then the RNG just needs to hash those
coordinates.

pqsort A C K S

pqsort G

rand_part B

pqsort I pqsort O

rand_part E rand_part M

pqsort Q

❖ Coordinates are
deterministic for a given
computation.

❖ Call to rand can
encapsulate the extraction
of coordinates.

❖ Number quality and
efficiency depend on hash
function and compiler/
runtime system.

pqsort D F H J pqsort L N P R

44

16 72

29

rand_part

pqsort

pqsortpqsort

pqsortpqsort

Pedigrees

pqsort 3

pqsort 0

rand_part

pqsort pqsort 0

rand_part 0 rand_part

pqsort 0

pqsort 0 1 3 pqsort 1 2 3<2,0,0>

<1,2,0>

The pedigree mechanism provides schedule-independent coordinates
for all strands as the computation unfolds dynamically.

❖ Assign each strand a rank in its
function frame.

❖ A pedigree is a vector of ranks
of ancestor strands.

0

0

2

0

1 2

0

0

30

Reading the pedigree involves
reading the ranks in the current
frame and all ancestor frames.

Idea for Maintaining Pedigrees

31

pqsort 0

rand_part 0

rand_part

pqsort

0

0

0

Idea: Each frame maintains
the rank of the strand
currently executing.1

Reads
<1,0,0>

1

0

0

[rank]

0

rand_part0 0

Reading the pedigree involves
reading the ranks in the current
frame and all ancestor frames.

Problem with Idea

32

pqsort 0 2

rand_part 0

rand_part rand_part 0

pqsort pqsort 0

0

0

0

0

0

Idea: Each frame maintains
the rank of the strand
currently executing.12

Ranks can change when parallel
processors execute different
strands in an ancestor frame.

Reads
<2,0,0>

1

0

0

Actual pedigree
is <1,0,0>!

Reads
<2,0,0>

[rank]1

0

2

0

rand_part0 0

How To Maintain Pedigrees

33

pqsort 0 1 2

rand_part 0

rand_part 0 rand_part 0

pqsort 0 pqsort 0

0,0

1,0

0,0

2,0

0,0

Each frame also stores a
birthrank — the rank in the

parent when the frame is created.0,10,2

A frame’s birthrank is constant
for the lifetime of the frame.

Reading the pedigree involves reading
the rank of the current frame and the
birthrank of the current frame and all
ancestor frames.

Reads
<1,0,0>

Reads
<2,0,0>

1,0

0,0 0,0

2,0

[birthrank],[rank]
2

0 0

Pseudocode to Maintain Pedigrees

On a spawn of F from G: On stalling at a sync in G:

On resuming the continuation
of a spawn or sync in G:

1 G�rank = p�rank
2 G�sp-rep = p�current-frame

3 �F �brank = G�rank

4 �F �parent = G�sp-rep
5 p�rank = 0

6 p�current-frame = �F

1 G�rank = p�rank

1 p�rank = G�rank++
2 p�current-frame = G�sp-rep

The Cilk compiler and runtime system maintain pedigrees with 2
integers per Cilk frame, ϴ(1) time, and no additional synchronization.

Reading a Cilk pedigree takes ϴ(d) time, where d is the
depth of nested spawns.

34

Outline
❖ DPRNG

❖ Dynamic multithreading

❖ The DPRNG problem

❖ Pedigrees

❖ DotMix

❖ Evaluation

❖ Life after Moore’s Law

35

A Pedigree-Based DPRNG: DotMix

DotMix hashes a pedigree into a pseudorandom number
in two steps:

1. Compression: Convert the pedigree into a single
machine word while preserving uniqueness.

2. Mixing: Remove correlations between compressed
pedigrees.

36

Step 1. Compressing a Pedigree

❖ Dot-product compression: Compute the dot product of
the pedigree J and a random vector Γ of integers mod p,
where p is a prime.

❖ Theorem: This hash is 2-independent: for any randomly
chosen vector Γ, any two distinct pedigrees J and J’,
and two arbitrary values h and h’, the probability that
Γ·J = h and Γ·J’ = h’ is at most 1/p2.

❖ Corollary: The probability of Γ·J = Γ·J’ is at most 1/p.

37

Efficacy of Compression

38

0.00

0.25

0.50

0.75

1.00

1e+03 1e+06 1e+09
Numbers generated

Pr
ob

ab
ilit

y
of

 c
ol

lis
io

n

For the DotMix
implementation (p =
264-59), a program can
can compress half a
billion pedigrees and,
with 99% probability,
no compressions will
collide.

Step 2. Mixing the Result

Mixing: Permute the compressed pedigree using MIX_ITER
iterations of this mixing routine from RC6:

Because this function is a bijective mapping [CRRY98],
mixing does not generate additional collisions.

39

uint64_t x; // Compressed pedigree
for (int i = 0; i < MIX_ITER; ++i) {
 x = x * (2 * x + 1); // mod 2^64
 x = (x << 32) | (x >> 32);
}

0

50

100

150

200

0 1 2 4 8 16
MIX_ITER

N
um

be
r o

f t
es

ts

Result
failed
weak
pass

Dieharder Statistical Test Results

40

DotMix with
MIX_ITER ≥ 2
performs as well as
Mersenne twister
on the Dieharder
statistical tests.

Outline
❖ DPRNG

❖ Dynamic multithreading

❖ The DPRNG problem

❖ Pedigrees

❖ DotMix

❖ Evaluation

❖ Life after Moore’s Law

41

Pedigree Overhead
Application Default (s) Pedigree (s) Overhead
fib 11.03 12.13 1.10
cholesky 2.75 2.92 1.06
fft 1.51 1.53 1.01
matmul 2.84 2.87 1.01
rectmul 6.20 6.21 1.00
strassen 5.23 5.24 1.00
queens 4.61 4.60 1.00
plu 7.32 7.35 1.00
heat 2.51 2.46 0.98
lu 7.88 7.25 0.92

Across 10
benchmarks, the
overhead to maintain
pedigrees in the MIT
Cilk runtime is less
than 1% on average
(geometric mean).

42

DotMix Performance

Application T1(DotMix)/
T1(mt)

T12(DotMix)/
T12(mt)

rfib 2.33 2.25

pi 1.21 1.13

maxIndSet 1.14 1.08

sampleSort 1.00 1.00

DiscreteHedging 1.03 1.03

Comparing DotMix to the
nondeterministic processor-
local Mersenne twister
solution:
❖ DotMix is 2.3 times as costly

as Mersenne twister in a
pathological case.

❖ On realistic randomized
applications, DotMix is at
most 21% more costly than
Mersenne twister.

43

Summary of DPRNG
❖ DotMix provides an efficient library for generating

pseudorandom numbers deterministically in parallel.

❖ DotMix exposes the same API as a serial RNG, thereby
requiring minimal code modifications to use.

❖ DotMix enables randomized dynamic multithreaded
programs to exhibit deterministic, repeatable execution,
which programmers can use to investigate program
behavior in a principled manner that is familiar from
serial programming.

44

Impact of Pedigrees and DotMix
❖ Pedigrees have been incorporated into the Intel Cilk Plus

runtime and both the Intel and GNU C/C++ compilers.

❖ Intel adopted the DotMix library for their deterministic
parallel random-number generation.

❖ DotMix directly inspired the design of
java.util.SplittableRandom in JDK8, written by Guy
Steele, Doug Lea, and Christine Flood [SLF14].

Steele Lea Flood

Spend time here.

45

Outline

❖ DPRNG

❖ Life after Moore’s Law

46
Leiserson SchardlEmer Kuszmaul Lampson Sanchez Thompson

The Effect of Moore’s Law

47

Connection Machine CM-5
• 60 GFLOPS on LINPACK
• $47 million in 1993

Apple 13” MacBook Pro
• 70 GFLOPS on LINPACK
• $1500 in 2015

Moore’s Law [M65, M75]

48

●

●
●●

●
●●
●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

● ●

●

● ●

●

●●●

●●

●●●
●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●● ●●

●
●

●

●

●●

●●●● ●●

●

●

●●●●●

●

●●●● ●●●

●

●

●● ●● ●

●●●●●●●●●●●●● ●

●

●●●●●●●●●●●●●● ●●●●●

●●●●

●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●

●

●

●● ●●

●

●●●●●●●● ●● ●●●●

●

●

●
●●

●● ●●

●●●
●●

●●

●

●
●

●●

● ●●

●

●●●●●●●●●●●●

●

●●●

●●

●●●●●●●●●●●●●●●●●

●●●

●●●●

●●
●●●●●●●●●●

●●●●●

●
●●

●

●

●

●
●

●

●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●● ●●●

●
●

●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●

●●●●● ●

●●●●● ●●

●●

●●

●●●●●

●●● ●●●●●●●●●
●●●●●

● ●●●●

●●●
●●●●●●●●

●●●●●
●●

● ●

●
●

●

●●●●●●●●● ●

●●
●● ●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●● ●●●●●●●●

●
●

●

● ●

●

●

● ●
●

●

●

●●●

●

●
●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●● ●●●●●●
●●

●●●

●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●● ●●●●●●
●●●●● ●

●●●●●●●●●●●●●●●●●● ●●●
●●●

●●●●●
●●●●●

●●●●●●●●●

●●

●●
●●●

●

●●●●●●●●

● ●●●●●

●●

●●●●●

●

●

●●●●●●●●

●

●●
● ●

●●●●

●

●●●

● ●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

● ●
●●

●
●
●●● ●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●●●●●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●● ●●●

●● ●● ●●

●

●

●●●●●●

●●●●●●●

●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●● ●●● ●● ●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●
●● ●●●●●●●●●●●

●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●

●●●●●●●●●●●●●●●●●●●●

● ●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●

●●●●●●●●●●●●●
●●

● ●

●
●

●

●

●

●

●

●●●● ●●

●●●●

●

●●●●●●● ●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●

●

●

● ●●●●●●●●●●●●●●●●●●●●

●

● ●●●

●

●

●

●

●

●

●

●

●
●● ●

●● ●●

●

● ●●● ●●●

●

●●●●●●●

●●●●●●●●●●●●● ●●●●
●●● ●

●

●

●●●●●●●●

● ●

1e+01

1e+03

1e+05

1970 1980 1990 2000 2010
Date

Tr
an

si
st

or
s

Processor scaling trends

Moore

“The complexity for minimum
component costs has increased
at a rate of roughly a factor of
two per year.” [M65]

“The new slope might approximate
a doubling every two years, rather
than every year, by the end of the
decade.” [M75]

50-Year Impact of Moore’s Law

49

Moore’s Law is a printing press for processor cycles.

More transistors means cheaper computing.

50-Year Impact of Moore’s Law

50

Moore’s Law is a printing press for processor cycles.

More transistors means cheaper computing.

Outline

❖ DPRNG

❖ Life after Moore’s Law

❖ Why do we think it’s ending?

❖ What happens next?

51

Moore’s Law Will End

“For planning horizons, I pick 2020 as
the earliest date where I think we
could call [Moore’s Law] dead.”

“You can talk me into 2022.”

52Colwell

Robert Colwell, chief architect for the Intel Pentium Pro, Pentium II,
Pentium III, and Pentium 4 processors, and former director of the
Microsystems Technology Office at DARPA, said in 2013:

The End is Nigh
The semiconductor industry is giving up on Moore’s Law.

❖ ITRS 2.0, 2015: “By 2020-25…it will become practically
impossible to reduce device dimensions any further.”

❖ Intel’s 10-K SEC filing, 2016: “We expect to lengthen the
amount of time we will utilize our 14nm and our next-
generation 10nm process technologies.”

53

Why Must It End Now?
We’re running out of atoms.

54

Silicon lattice

Silicon lattice constant:
0.543 nanometers
(5.43 angstroms)

14 nanometer transistors

Transistors are now
25 atoms wide.

Intel Skylake processor, 2015

Outline

❖ DPRNG

❖ Life after Moore’s Law

❖ Why do we think it’s ending?

❖ What happens next?

55

What Happens Next?

Can rapid growth in computer performance
continue after Moore’s Law ends?

56

Yes, with caveats.

All Is Not Lost

There are “replacement technologies” that can provide many applications
with rapid growth in performance after the demise of Moore’s Law.

❖ But semiconductor physics and silicon-fabrication technologies won’t help
much.

❖ Computer science itself must provide the impetus with performance-
engineering technologies drawn from core CS areas of architecture,
programming languages, compilers, systems, algorithms, applications, and
tools.

❖ Unlike the broad-based nature of Moore’s Law, these CS technologies will
drive up performance unevenly in an opportunistic fashion.

57

How much performance can we
get from writing faster code?

4k-by-4k Matrix Multiplication
Quiz: How long does the following code take to execute?

58

for i in xrange(n):
 for j in xrange(n):
 for k in xrange(n):
 C[i][j] += A[i][k] * B[k][j]

Python code Machine: Amazon Web Services
c4.8xlarge spot instance.

❖ Dual socket Intel Xeon E5-2666
v3 (Haswell)

❖ 18 cores, 2.9 GHz, 60 GiB DRAM
A. 7 milliseconds
B. 7 seconds
C. 7 minutes
D. 7 hours
E. 7 days

Recall that this computation
performs 2 x 40963 = 128 billion
floating-point operations.

4k-by-4k Matrix Multiplication
Quiz: How long does the following code take to execute?

59

for i in xrange(n):
 for j in xrange(n):
 for k in xrange(n):
 C[i][j] += A[i][k] * B[k][j]

Python code Machine: Amazon Web Services
c4.8xlarge spot instance.

❖ Dual socket Intel Xeon E5-2666
v3 (Haswell)

❖ 18 cores, 2.9 GHz, 60 GiB DRAM
A. 7 milliseconds
B. 7 seconds
C. 7 minutes
D. 7 hours
E. 7 days

Recall that this computation
performs 2 x 40963 = 128 billion
floating-point operations.

4k-by-4k Matrix Multiplication
Version Implementation Running

time (s) GFLOPS Absolute
speedup

Relative
speedup

Fraction of
peak

1 Python 25,552.48 0.005 1 — 0.00%

2 Java 2,372.68 0.058 11 10.8 0.01%

3 C 542.67 0.253 47 4.4 0.03%

4 Parallel loops 69.80 1.969 366 7.8 0.24%

5 Parallel divide-
and-conquer 3.80 36.180 6,727 18.4 4.33%

6 + vectorization 1.10 124.914 23,224 3.5 14.96%

7 + AVX intrinsics 0.41 337.812 62,806 2.7 40.45%

8 Strassen 0.38 361.177 67,150 1.1 43.24%

The parallel divide-and-conquer C-
implementation of Strassen that
uses AVX intrinsics has 40 times

more lines than the Python version.

60

Comparable to 32
years of Moore’s Law

improvements!

Spend time here.

Problem: Fast Code vs. Simple Code

Simple code is slow.

Fast code is complicated.

How? Remedy the ad hoc nature of software
performance engineering by developing a  

science of fast code.

Let’s make a world with far less distance
between fast code and simple code.

Most important slide! Spend time here!

61

My Contributions to a Science of Fast Code

62

Artifact Simple programming
models

Theories of
performance

Efficient diagnostic
tools

PBFS ⚫

DPRNG ⚫

Cilk-P ⚫ ⚫

Prism ⚫

Color ⚫

Cilkprof ⚫

Rader ⚫

Tapir ⚫

CSI ⚫ ⚫

⚫
The artifact primarily supports the
technology enabling a science of fast code.

There’s still a lot to do.

Developing a Science of Fast Code
Four action items stand out as key to developing a science of fast code:

❖ We need simple programming models one can reason about because
they obey mathematical properties such as determinism and
composability. (E.g., DPRNG, Commutative Building Blocks [Shun15])

❖ We need theories of performance that are borne out in practice.  
(E.g., Work-span analysis, weighted dag model [MA16])

❖ We need efficient diagnostic tools for correctness and performance
whose efficacy is mathematically grounded.  
(E.g., Cilkprof, C-RACER [UAFL16])

❖ We need to educate programmers in these software performance
engineering technologies and in thinking critically about software
performance.

63

Questions?

64

