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The Problem with Fast Code

Writing fast code is notoriously hard.
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Writing Fast Code in the 1970’s—80’s
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Knuth

“Premature optimization is the root of all evil."  [K79]

“More computing sins are committed in the 
name of efficiency (without necessarily 

achieving it) than for any other single reason 
— including blind stupidity.”  [W79]

“The First Rule of Program Optimization: 
Don’t do it.

The Second Rule of Program 
Optimization — For experts only:  

Don’t do it yet.”  [J88]

Wulf

Jackson



Writing Fast Code Today
Today’s complicated hardware and software systems 

make software performance engineering difficult.
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Intel Skylake processor
Systems on a multicore machine:  
parallel processor cores, vector units, 
caches, memory bandwidth, prefetchers, 
paging, discs, network bandwidth, 
GPU’s, power…

Writing code that uses these systems efficiently in concert 
requires substantial expertise and ad hoc knowledge.



Hard Problem: Parallel Programming
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“[W]hen we start talking about parallelism 
and ease of use of truly parallel computers, 
we’re talking about a problem as hard as any 
that computer science has faced.” [H06]

❖ Parallel programs are hard to reason about and 
debug because they behave nondeterministically 
due to their concurrent execution.

❖ Parallel program performance is hard to reason 
about because it’s measured in terms of 
scalability as well execution time.

Hennessy



Just Ignore the Problem?

Programmers today prefer to ignore performance 
concerns and just focus on writing simple, correct code.

Will writing fast code forever be too hard for average 
programmers to bother doing? 
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No!  Moore’s Law is ending!



Thesis Statement
❖ I contend that a science of fast code can be developed to 

alleviate the ad hoc and unprincipled aspects of software 
performance engineering.

❖ This thesis presents an array of artifacts that enable 
principled approaches to dealing with nondeterminism and 
scalability concerns in efficient multicore software.

❖ These artifacts develop three core technologies that support 
scientific inquiry into the behavior and performance of fast 
code: simple programming models, theories of performance 
that are borne out in practice, and efficient diagnostic tools.
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Contributions to a Science of Fast Code

8

Artifact Simple programming 
models

Theories of 
performance

Efficient diagnostic 
tools

PBFS ⚫

DPRNG ⚫

Cilk-P ⚫ ⚫

Prism ⚫

Color ⚫

Cilkprof ⚫

Rader ⚫

Tapir ⚫

CSI ⚫ ⚫

⚫
The artifact primarily supports the
technology enabling a science of fast code.



Content of My Thesis
❖ PBFS

❖ DPRNG

❖ Cilk-P

❖ Prism

❖ Color

❖ Cilkprof

❖ Rader

❖ Tapir

❖ CSI

❖ Life after Moore’s Law
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Content of This Talk
❖ PBFS

❖ DPRNG
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❖ Life after Moore’s Law
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Outline

❖ Deterministic parallel random-number generation 
(DPRNG)

❖ Life after Moore’s Law

11 Leiserson SukhaSchardl



Randomized Applications

Random numbers are used in a variety of applications, including:
❖ Black Scholes

❖ Computations on social networks

❖ Simulated annealing

❖ Monte Carlo methods

❖ Machine learning (e.g., 
stochastic gradient 
descent)

How do we parallelize these applications?
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Review of Serial RNG’s
❖ Object with state.
❖ Each call to rand updates the 

state and returns a 
pseudorandom number.

❖ State is initialized with a seed.
❖ The RNG behaves 

deterministically for a fixed 
seed.

class LCG { 
 public: 
  LCG() 
  : _s(0), _a(1103515245), 
    _c(12345), _m(2147483648) 
  {} 

  int rand() { 
    _s = (_a * _s + _c) % _m; 
    return _s; 
  } 

  void seed(unsigned int seed) { 
    _s = seed; 
  } 
  
 protected: 
  int _a, _c; 
  unsigned int _m, _s; 
};13

Example serial RNG

We want this property for 
debugging parallel codes.



Deterministic Parallelism
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Bocchino Adve

Adve Snir

“Parallel programming must be 
deterministic by default.” [BAAS09]

“We should build 
from essentially 
deterministic, 
composable 
components.” [L06]

Lee

To address the difficulty of contending with nondeterminism, many 
researchers have called for some form of deterministic parallelism.

ShunBlelloch

“Internally deterministic parallel 
algorithms can be fast.” [BFGS12]

Fineman Gibbons



Dynamic Multithreading
Dynamic multithreading concurrency platforms (e.g., Cilk [FLR98], DPJ 
[BAAS09], Habanero-Java [CZH11], OpenMP [ACD09], Java Fork/Join 
Framework [L00], TBB [R07], TPL [LH07]) enable programmers to write 
deterministic parallel programs.

Example Cilk code

void pqsort(int64_t array[], size_t n, 
            size_t l, size_t h) { 
  // ... base case ... 
  size_t part; 
  part = partition(array, n, l, h); 
  cilk_spawn pqsort(array, n, l, part); 
  pqsort(array, n, part, h); 
  cilk_sync; 
}

15

More on this shortly.



DPRNG Contributions [LSS12]

The DotMix DPRNG library produces pseudorandom numbers for 
dynamic multithreaded codes.

❖ DotMix is deterministic by making use of the pedigree mechanism.

❖ DotMix produces high-quality numbers — numbers of comparable 
statistical quality to the state-of-the-art Mersenne twister [MN98] 
RNG.

❖ The DotMix implementation is fast, incurring relatively little 
overhead compared to a nondeterministic use of Mersenne twister.
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Outline
❖ DPRNG

❖ Dynamic multithreading

❖ The DPRNG problem

❖ Pedigrees

❖ DotMix

❖ Evaluation

❖ Life after Moore’s Law
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void qsort(int64_t array[], size_t n, 
           size_t l, size_t h) { 
  // ... base case ... 
  size_t part; 
  part = partition(array, n, l, h); 
  qsort(array, n, l, part); 
  qsort(array, n, part, h); 

}

A Simple Parallel Quicksort

void pqsort(int64_t array[], size_t n, 
            size_t l, size_t h) { 
  // ... base case ... 
  size_t part; 
  part = partition(array, n, l, h); 
  cilk_spawn pqsort(array, n, l, part); 
  pqsort(array, n, part, h); 
  cilk_sync; 
}

This call to pqsort is allowed 
(but not required) to execute in 
parallel with its continuation.

Both recursive pqsort calls 
must return before control 

passes this point.

Example Cilk code

Dynamic multithreading language constructs expose logical 
parallelism within a program.
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Processor-Oblivious Execution Model
void pqsort(int64_t array[], size_t n, 
            size_t l, size_t h) { 
  // ... base case ... 
  size_t part; 
  part = partition(array, n, l, h); 
  cilk_spawn pqsort(array, n, l, part); 
  pqsort(array, n, part, h); 
  cilk_sync; 
}

pqsort

pqsort

pqsort pqsort

partition

pqsort

partition partition

pqsort

pqsort

pqsort

pqsort

partition

The executed computation 
forms a dag embedded in the 
function invocation tree.

Strand — serial sequence 
of instructions containing 

no parallel control

spawn strand

sync strand

parallel control 
dependency

function frame
19



Scheduling on Parallel Processors

P1 P2 P3

pqsort

pqsort

pqsort pqsort

partition

pqsort

pqsort

partition partition

pqsort

pqsort

pqsort

pqsort pqsort

partition

pqsort

pqsort

partition partition

pqsort

The runtime system automatically load-balances the program 
efficiently on available processors.

P1 P2

If the program contains no 
determinacy races, then 

every execution is the same, 
regardless of scheduling.

20



Outline
❖ DPRNG

❖ Dynamic multithreading

❖ The DPRNG problem

❖ Pedigrees

❖ DotMix

❖ Evaluation

❖ Life after Moore’s Law
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Randomized Parallel Quicksort
void pqsort(int64_t array[], size_t n, 
            size_t l, size_t h) { 
  // ... base case ... 
  size_t part; 
  part = rand_partition(array, n, l, h); 
  cilk_spawn pqsort(array, n, l, part); 
  pqsort(array, n, part, h); 
  cilk_sync; 
}

Partition the array 
randomly to guarantee 
O(n log n) running time 
with high probability.

How do we generate the pseudorandom numbers for 
rand_partition?

22



Race on accessing RNG leads to 
nondeterministic behavior.

Idea 1: Global RNG

P1 P2 P3

pqsort

pqsort

pqsort pqsort

rand_part

pqsort pqsort

rand_part rand_part

pqsort

pqsort

pqsort pqsort

rand_part

44

16 72

pqsort

pqsort

pqsort pqsort

rand_partRNG

pqsort

rand_part

pqsort

rand_part

🔒

44

72 16

4 Race on 
calling rand.
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Nondeterministic scheduling leads 
to nondeterministic behavior.

Idea 2: Processor-Local RNG’s

P1 P2 P3

pqsort

pqsort

pqsort pqsort

rand_part

pqsort pqsort

rand_part rand_part

pqsort

pqsort

pqsort

pqsort pqsort

rand_part

pqsort

rand_part

pqsort

rand_part

pqsort

pqsort pqsort

rand_partRNG RNG RNG

44

16 72

44

16 4

98Nondeterministic 
scheduling of computation.
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void pqsort(int64_t array[], size_t n, 
            size_t l, size_t h) { 
  // ... base case ... 
  size_t part; 
  part = rand_partition(array, n, l, h); 
  cilk_spawn pqsort(array, n, l, part); 
  pqsort(array, n, part, h); 
  cilk_sync; 
}

void pqsort(int64_t array[], size_t n, 
            size_t l, size_t h, RNG r) { 
  // ... base case ... 
  size_t part; 
  part = rand_partition(array, n, l, h, r); 
  RNG r2 = // ??? 
  cilk_spawn pqsort(array, n, l, part, r2); 
  pqsort(array, n, part, h, r); 
  cilk_sync; 
}

Idea 3: Spawning RNG’s

25

Create a new RNG object for 
each spawned subroutine.

Pass different RNG’s to 
appropriate methods.

Assign a different RNG for each spawned subroutine.

Issues:

1.  Not obvious how to make many 
new RNG’s and still produce 
quality pseudorandom numbers. 

2. Can’t use a global RNG.

3. Might require extensive code 
changes.



Previous Research
Previous research has developed DPRNG’s for Pthreaded 
programs:
❖ SPRNG [MS01] is a popular DPRNG that creates 

independent RNG’s for different Pthreads via a 
parameterization process.

❖ Coddington [C97] surveys alternative RNG-creation 
schemes, such as “leapfrogging” and “splitting.”

❖ Salmon et al. [SMDS11] explore the idea of generating parallel 
RNG’s via independent transformations of counter values.
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void pqsort(int64_t array[], size_t n, 
            size_t l, size_t h, RNG r) { 
  // ... base case ... 
  size_t part; 
  part = rand_partition(array, n, l, h, r); 
  RNG r2 = // ??? 
  cilk_spawn pqsort(array, n, l, part, r2); 
  pqsort(array, n, part, h, r); 
  cilk_sync; 
}

Idea 3: Spawning RNG’s
Idea: Create a new, independent RNG for each spawned subcomputation.

Problem: When we tried using 
SPRNG on a simple recursive 
Cilk code, we found that:

❖ SPRNG runs 50,000 times 
slower than using Mersenne 
twister nondeterministically.

❖ SPRNG could not guarantee 
the independence of the 
numbers generated for 
computations that perform 
many spawns.

SPRNG is not designed to handle dynamic multithreaded computations.

void pqsort(int64_t array[], size_t n, 
            size_t l, size_t h, SPRNG r) { 
  // ... base case ... 
  size_t part; 
  part = rand_partition(array, n, l, h, r); 
  SPRNG r2 = r.spawn(); 
  cilk_spawn pqsort(array, n, l, part, r2); 
  pqsort(array, n, part, h, r); 
  cilk_sync; 
}

SPRNG [MS01] provides a spawn 
routine for creating new RNG’s.
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❖ DPRNG

❖ Dynamic multithreading

❖ The DPRNG problem

❖ Pedigrees

❖ DotMix

❖ Evaluation

❖ Life after Moore’s Law
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Idea 4: The Platform Helps
Idea: If each strand is assigned schedule-independent 
coordinates, then the RNG just needs to hash those 
coordinates.

pqsort A C K S

pqsort G

rand_part B

pqsort I pqsort O

rand_part E rand_part M

pqsort Q

❖ Coordinates are 
deterministic for a given 
computation.

❖ Call to rand can 
encapsulate the extraction 
of coordinates.

❖ Number quality and 
efficiency depend on hash 
function and compiler/
runtime system.

pqsort D F H J pqsort L N P R

44

16 72

29



rand_part

pqsort

pqsortpqsort

pqsortpqsort

Pedigrees

pqsort 3

pqsort 0

rand_part

pqsort pqsort 0

rand_part 0 rand_part

pqsort 0

pqsort 0 1 3 pqsort 1 2 3<2,0,0>

<1,2,0>

The pedigree mechanism provides schedule-independent coordinates 
for all strands as the computation unfolds dynamically.

❖ Assign each strand a rank in its 
function frame.

❖ A pedigree is a vector of ranks 
of ancestor strands.

0

0

2

0

1 2

0

0
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Reading the pedigree involves 
reading the ranks in the current 
frame and all ancestor frames.

Idea for Maintaining Pedigrees

31

pqsort 0

rand_part 0

rand_part

pqsort

0

0

0

Idea: Each frame maintains 
the rank of the strand 
currently executing.1

Reads 
<1,0,0>

1

0

0

[rank]

0

rand_part0 0



Reading the pedigree involves 
reading the ranks in the current 
frame and all ancestor frames.

Problem with Idea
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pqsort 0 2

rand_part 0

rand_part rand_part 0

pqsort pqsort 0

0

0

0

0

0

Idea: Each frame maintains 
the rank of the strand 
currently executing.12

Ranks can change when parallel 
processors execute different 
strands in an ancestor frame.

Reads 
<2,0,0>

1

0

0

Actual pedigree 
is <1,0,0>!

Reads 
<2,0,0>

[rank]1

0

2

0

rand_part0 0



How To Maintain Pedigrees
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pqsort 0 1 2

rand_part 0

rand_part 0 rand_part 0

pqsort 0 pqsort 0

0,0

1,0

0,0

2,0

0,0

Each frame also stores a 
birthrank — the rank in the 

parent when the frame is created.0,10,2

A frame’s birthrank is constant 
for the lifetime of the frame.

Reading the pedigree involves reading 
the rank of the current frame and the 
birthrank of the current frame and all 
ancestor frames.

Reads 
<1,0,0>

Reads 
<2,0,0>

1,0

0,0 0,0

2,0

[birthrank],[rank]
2

0 0



Pseudocode to Maintain Pedigrees

On a spawn of F from G: On stalling at a sync in G:

On resuming the continuation
of a spawn or sync in G:

1 G�rank = p�rank
2 G�sp-rep = p�current-frame

3 �F �brank = G�rank

4 �F �parent = G�sp-rep
5 p�rank = 0

6 p�current-frame = �F

1 G�rank = p�rank

1 p�rank = G�rank++
2 p�current-frame = G�sp-rep

The Cilk compiler and runtime system maintain pedigrees with 2 
integers per Cilk frame, ϴ(1) time, and no additional synchronization.

Reading a Cilk pedigree takes ϴ(d) time, where d is the 
depth of nested spawns.

34



Outline
❖ DPRNG

❖ Dynamic multithreading

❖ The DPRNG problem

❖ Pedigrees
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❖ Evaluation
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A Pedigree-Based DPRNG: DotMix

DotMix hashes a pedigree into a pseudorandom number 
in two steps:

1. Compression: Convert the pedigree into a single 
machine word while preserving uniqueness.

2. Mixing: Remove correlations between compressed 
pedigrees.

36



Step 1. Compressing a Pedigree

❖ Dot-product compression: Compute the dot product of 
the pedigree J and a random vector Γ of integers mod p, 
where p is a prime.

❖ Theorem: This hash is 2-independent: for any randomly 
chosen vector Γ, any two distinct pedigrees J and J’, 
and two arbitrary values h and h’, the probability that 
Γ·J = h and Γ·J’ = h’ is at most 1/p2.

❖ Corollary: The probability of Γ·J = Γ·J’ is at most 1/p.
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Efficacy of Compression
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billion pedigrees and, 
with 99% probability, 
no compressions will 
collide.



Step 2. Mixing the Result

Mixing: Permute the compressed pedigree using MIX_ITER 
iterations of this mixing routine from RC6:

Because this function is a bijective mapping [CRRY98], 
mixing does not generate additional collisions.

39

uint64_t x;  // Compressed pedigree 
for (int i = 0; i < MIX_ITER; ++i) { 
  x = x * (2 * x + 1);  // mod 2^64 
  x = (x << 32) | (x >> 32); 
}
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Dieharder Statistical Test Results

40

DotMix with 
MIX_ITER ≥ 2 
performs as well as 
Mersenne twister 
on the Dieharder 
statistical tests.
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❖ Life after Moore’s Law
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Pedigree Overhead
Application Default (s) Pedigree (s) Overhead
fib 11.03 12.13 1.10
cholesky 2.75 2.92 1.06
fft 1.51 1.53 1.01
matmul 2.84 2.87 1.01
rectmul 6.20 6.21 1.00
strassen 5.23 5.24 1.00
queens 4.61 4.60 1.00
plu 7.32 7.35 1.00
heat 2.51 2.46 0.98
lu 7.88 7.25 0.92

Across 10 
benchmarks, the 
overhead to maintain 
pedigrees in the MIT 
Cilk runtime is less 
than 1% on average 
(geometric mean). 
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DotMix Performance

Application T1(DotMix)/
T1(mt)

T12(DotMix)/
T12(mt)

rfib 2.33 2.25

pi 1.21 1.13

maxIndSet 1.14 1.08

sampleSort 1.00 1.00

DiscreteHedging 1.03 1.03

Comparing DotMix to the 
nondeterministic processor-
local Mersenne twister 
solution:
❖ DotMix is 2.3 times as costly 

as Mersenne twister in a 
pathological case.

❖ On realistic randomized 
applications, DotMix is at 
most 21% more costly than 
Mersenne twister.
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Summary of DPRNG
❖ DotMix provides an efficient library for generating 

pseudorandom numbers deterministically in parallel.

❖ DotMix exposes the same API as a serial RNG, thereby 
requiring minimal code modifications to use.

❖ DotMix enables randomized dynamic multithreaded 
programs to exhibit deterministic, repeatable execution, 
which programmers can use to investigate program 
behavior in a principled manner that is familiar from 
serial programming.
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Impact of Pedigrees and DotMix
❖ Pedigrees have been incorporated into the Intel Cilk Plus 

runtime and both the Intel and GNU C/C++ compilers.

❖ Intel adopted the DotMix library for their deterministic 
parallel random-number generation.

❖ DotMix directly inspired the design of 
java.util.SplittableRandom in JDK8, written by Guy 
Steele, Doug Lea, and Christine Flood [SLF14].

Steele Lea Flood

Spend time here.
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Outline

❖ DPRNG

❖ Life after Moore’s Law

46
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The Effect of Moore’s Law
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Connection Machine CM-5
• 60 GFLOPS on LINPACK
• $47 million in 1993

Apple 13” MacBook Pro
• 70 GFLOPS on LINPACK
• $1500 in 2015



Moore’s Law [M65, M75]
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Processor scaling trends

Moore

“The complexity for minimum 
component costs has increased 
at a rate of roughly a factor of 
two per year.” [M65]

“The new slope might approximate 
a doubling every two years, rather 
than every year, by the end of the 
decade.” [M75]



50-Year Impact of Moore’s Law
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Moore’s Law is a printing press for processor cycles.

More transistors means cheaper computing.
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Moore’s Law is a printing press for processor cycles.

More transistors means cheaper computing.



Outline

❖ DPRNG

❖ Life after Moore’s Law

❖ Why do we think it’s ending?

❖ What happens next?
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Moore’s Law Will End

“For planning horizons, I pick 2020 as 
the earliest date where I think we 
could call [Moore’s Law] dead.”

“You can talk me into 2022.”

52Colwell

Robert Colwell, chief architect for the Intel Pentium Pro, Pentium II, 
Pentium III, and Pentium 4 processors, and former director of the 
Microsystems Technology Office at DARPA, said in 2013:



The End is Nigh
The semiconductor industry is giving up on Moore’s Law.

❖ ITRS 2.0, 2015: “By 2020-25…it will become practically 
impossible to reduce device dimensions any further.” 

❖ Intel’s 10-K SEC filing, 2016: “We expect to lengthen the 
amount of time we will utilize our 14nm and our next-
generation 10nm process technologies.”
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Why Must It End Now?
We’re running out of atoms.
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Silicon lattice

Silicon lattice constant:
0.543 nanometers
(5.43 angstroms)

14 nanometer transistors

Transistors are now
25 atoms wide.

Intel Skylake processor, 2015



Outline

❖ DPRNG

❖ Life after Moore’s Law

❖ Why do we think it’s ending?

❖ What happens next?
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What Happens Next?

Can rapid growth in computer performance 
continue after Moore’s Law ends?

56

Yes, with caveats.



All Is Not Lost

There are “replacement technologies” that can provide many applications 
with rapid growth in performance after the demise of Moore’s Law.

❖ But semiconductor physics and silicon-fabrication technologies won’t help 
much.

❖ Computer science itself must provide the impetus with performance-
engineering technologies drawn from core CS areas of architecture, 
programming languages, compilers, systems, algorithms, applications, and 
tools.

❖ Unlike the broad-based nature of Moore’s Law, these CS technologies will 
drive up performance unevenly in an opportunistic fashion.

57

How much performance can we 
get from writing faster code?



4k-by-4k Matrix Multiplication
Quiz: How long does the following code take to execute?
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for i in xrange(n): 
    for j in xrange(n): 
        for k in xrange(n): 
            C[i][j] += A[i][k] * B[k][j]

Python code Machine: Amazon Web Services 
c4.8xlarge spot instance.

❖ Dual socket Intel Xeon E5-2666 
v3 (Haswell)

❖ 18 cores, 2.9 GHz, 60 GiB DRAM
A. 7 milliseconds
B. 7 seconds
C. 7 minutes
D. 7 hours
E. 7 days

Recall that this computation 
performs 2 x 40963 = 128 billion 
floating-point operations.
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4k-by-4k Matrix Multiplication
Version Implementation Running 

time (s) GFLOPS Absolute 
speedup

Relative 
speedup

Fraction of 
peak

1 Python 25,552.48 0.005 1 — 0.00%

2 Java 2,372.68 0.058 11 10.8 0.01%

3 C 542.67 0.253 47 4.4 0.03%

4 Parallel loops 69.80 1.969 366 7.8 0.24%

5 Parallel divide-
and-conquer 3.80 36.180 6,727 18.4 4.33%

6 + vectorization 1.10 124.914 23,224 3.5 14.96%

7 + AVX intrinsics 0.41 337.812 62,806 2.7 40.45%

8 Strassen 0.38 361.177 67,150 1.1 43.24%

The parallel divide-and-conquer C-
implementation of Strassen that 
uses AVX intrinsics has 40 times 

more lines than the Python version.
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Comparable to 32 
years of Moore’s Law 

improvements!

Spend time here.



Problem: Fast Code vs. Simple Code

Simple code is slow.

Fast code is complicated.

How?  Remedy the ad hoc nature of software 
performance engineering by developing a  

science of fast code.

Let’s make a world with far less distance 
between fast code and simple code.

Most important slide!  Spend time here!

61



My Contributions to a Science of Fast Code
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Artifact Simple programming 
models

Theories of 
performance

Efficient diagnostic 
tools

PBFS ⚫

DPRNG ⚫

Cilk-P ⚫ ⚫

Prism ⚫

Color ⚫

Cilkprof ⚫

Rader ⚫

Tapir ⚫

CSI ⚫ ⚫

⚫
The artifact primarily supports the
technology enabling a science of fast code.

There’s still a lot to do.



Developing a Science of Fast Code
Four action items stand out as key to developing a science of fast code:

❖ We need simple programming models one can reason about because 
they obey mathematical properties such as determinism and 
composability.  (E.g., DPRNG, Commutative Building Blocks [Shun15])

❖ We need theories of performance that are borne out in practice.  
(E.g., Work-span analysis, weighted dag model [MA16])

❖ We need efficient diagnostic tools for correctness and performance 
whose efficacy is mathematically grounded.  
(E.g., Cilkprof, C-RACER [UAFL16])

❖ We need to educate programmers in these software performance 
engineering technologies and in thinking critically about software 
performance.
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Questions?
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