
6.172 Performance Engineering of Software Systems

Lecture 13: Chromatic Scheduling

Tao B. Schardl

MIT Computer Science and Artificial Intelligence Laboratory

October 23, 2012

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 1 / 50

PageRank

Definition
Given a graph (P,L(P)) of pages P and links between pages L(P),
the PageRank PR(pi) of a page pi is the probability that a person who
randomly follows links will stop at page pi.

0.15 0.09

0.09

0.29

0.03

0.03

0.29

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 2 / 50

PageRank

Formally, the PageRank PR(pi) of page pi is defined by

PR(pi) =
1− d

|P |
+ d

∑
q∈N(pi)

PR(q)

|L(q)|

N(pi) is the set of pages that
link to pi,
L(q) is the set of outgoing
links from page q, and
d is the probability of following
any link on a page.

0.15 0.09

0.09

0.29

0.03

0.03

0.29

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 3 / 50

PageRank

Problem
Given a graph (P,L(P)) of pages P connected by links L(P), compute
the PageRank of each page in P .

Main Idea: Compute PageRanks iteratively until convergence.

0.14 0.14

0.14

0.14

0.14

0.14

0.14

Initially, all PageRanks are 1
|P | .

Update using PR(pi) =
1−d
|P | + d

∑
q∈N(pi)

PR(q)
|L(q)|

Example uses d = 0.85.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 4 / 50

PageRank

Problem
Given a graph (P,L(P)) of pages P connected by links L(P), compute
the PageRank of each page in P .

Main Idea: Compute PageRanks iteratively until convergence.

0.14 0.14

0.14

0.14

0.14

0.14

0.14

Initially, all PageRanks are 1
|P | .

Update using PR(pi) =
1−d
|P | + d

∑
q∈N(pi)

PR(q)
|L(q)|

Example uses d = 0.85.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 4 / 50

PageRank

Problem
Given a graph (P,L(P)) of pages P connected by links L(P), compute
the PageRank of each page in P .

Main Idea: Compute PageRanks iteratively until convergence.

0.12 0.14

0.14

0.14

0.14

0.14

0.14

Initially, all PageRanks are 1
|P | .

Update using PR(pi) =
1−d
|P | + d

∑
q∈N(pi)

PR(q)
|L(q)|

Example uses d = 0.85.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 4 / 50

PageRank

Problem
Given a graph (P,L(P)) of pages P connected by links L(P), compute
the PageRank of each page in P .

Main Idea: Compute PageRanks iteratively until convergence.

0.12 0.14

0.14

0.14

0.14

0.14

0.14

Initially, all PageRanks are 1
|P | .

Update using PR(pi) =
1−d
|P | + d

∑
q∈N(pi)

PR(q)
|L(q)|

Example uses d = 0.85.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 4 / 50

PageRank

Problem
Given a graph (P,L(P)) of pages P connected by links L(P), compute
the PageRank of each page in P .

Main Idea: Compute PageRanks iteratively until convergence.

0.12 0.14

0.14

0.14

0.14

0.14

0.14

Initially, all PageRanks are 1
|P | .

Update using PR(pi) =
1−d
|P | + d

∑
q∈N(pi)

PR(q)
|L(q)|

Example uses d = 0.85.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 4 / 50

PageRank

Problem
Given a graph (P,L(P)) of pages P connected by links L(P), compute
the PageRank of each page in P .

Main Idea: Compute PageRanks iteratively until convergence.

0.12 0.14

0.14

0.14

0.14

0.14

0.14

Initially, all PageRanks are 1
|P | .

Update using PR(pi) =
1−d
|P | + d

∑
q∈N(pi)

PR(q)
|L(q)|

Example uses d = 0.85.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 4 / 50

PageRank

Problem
Given a graph (P,L(P)) of pages P connected by links L(P), compute
the PageRank of each page in P .

Main Idea: Compute PageRanks iteratively until convergence.

0.12 0.14

0.07

0.14

0.14

0.14

0.14

Initially, all PageRanks are 1
|P | .

Update using PR(pi) =
1−d
|P | + d

∑
q∈N(pi)

PR(q)
|L(q)|

Example uses d = 0.85.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 4 / 50

PageRank

Problem
Given a graph (P,L(P)) of pages P connected by links L(P), compute
the PageRank of each page in P .

Main Idea: Compute PageRanks iteratively until convergence.

0.12 0.14

0.07

0.14

0.14

0.14

0.14

Initially, all PageRanks are 1
|P | .

Update using PR(pi) =
1−d
|P | + d

∑
q∈N(pi)

PR(q)
|L(q)|

Example uses d = 0.85.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 4 / 50

PageRank

Problem
Given a graph (P,L(P)) of pages P connected by links L(P), compute
the PageRank of each page in P .

Main Idea: Compute PageRanks iteratively until convergence.

0.12 0.14

0.07

0.26

0.14

0.14

0.14

Initially, all PageRanks are 1
|P | .

Update using PR(pi) =
1−d
|P | + d

∑
q∈N(pi)

PR(q)
|L(q)|

Example uses d = 0.85.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 4 / 50

PageRank

Problem
Given a graph (P,L(P)) of pages P connected by links L(P), compute
the PageRank of each page in P .

Main Idea: Compute PageRanks iteratively until convergence.

0.12 0.14

0.07

0.26

0.14

0.14

0.14

Initially, all PageRanks are 1
|P | .

Update using PR(pi) =
1−d
|P | + d

∑
q∈N(pi)

PR(q)
|L(q)|

Example uses d = 0.85.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 4 / 50

PageRank

Problem
Given a graph (P,L(P)) of pages P connected by links L(P), compute
the PageRank of each page in P .

Main Idea: Compute PageRanks iteratively until convergence.

0.12 0.14

0.07

0.26

0.06

0.14

0.14

Initially, all PageRanks are 1
|P | .

Update using PR(pi) =
1−d
|P | + d

∑
q∈N(pi)

PR(q)
|L(q)|

Example uses d = 0.85.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 4 / 50

PageRank

Problem
Given a graph (P,L(P)) of pages P connected by links L(P), compute
the PageRank of each page in P .

Main Idea: Compute PageRanks iteratively until convergence.

0.12 0.14

0.07

0.26

0.06

0.14

0.14

Initially, all PageRanks are 1
|P | .

Update using PR(pi) =
1−d
|P | + d

∑
q∈N(pi)

PR(q)
|L(q)|

Example uses d = 0.85.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 4 / 50

PageRank

Problem
Given a graph (P,L(P)) of pages P connected by links L(P), compute
the PageRank of each page in P .

Main Idea: Compute PageRanks iteratively until convergence.

0.12 0.14

0.07

0.26

0.06

0.05

0.14

Initially, all PageRanks are 1
|P | .

Update using PR(pi) =
1−d
|P | + d

∑
q∈N(pi)

PR(q)
|L(q)|

Example uses d = 0.85.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 4 / 50

PageRank

Problem
Given a graph (P,L(P)) of pages P connected by links L(P), compute
the PageRank of each page in P .

Main Idea: Compute PageRanks iteratively until convergence.

0.12 0.14

0.07

0.26

0.06

0.05

0.14

Initially, all PageRanks are 1
|P | .

Update using PR(pi) =
1−d
|P | + d

∑
q∈N(pi)

PR(q)
|L(q)|

Example uses d = 0.85.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 4 / 50

PageRank

Problem
Given a graph (P,L(P)) of pages P connected by links L(P), compute
the PageRank of each page in P .

Main Idea: Compute PageRanks iteratively until convergence.

0.12 0.14

0.07

0.26

0.06

0.05

0.28

Initially, all PageRanks are 1
|P | .

Update using PR(pi) =
1−d
|P | + d

∑
q∈N(pi)

PR(q)
|L(q)|

Example uses d = 0.85.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 4 / 50

PageRank

Problem
Given a graph (P,L(P)) of pages P connected by links L(P), compute
the PageRank of each page in P .

Main Idea: Compute PageRanks iteratively until convergence.

0.12 0.14

0.07

0.26

0.06

0.05

0.28

Initially, all PageRanks are 1
|P | .

Update using PR(pi) =
1−d
|P | + d

∑
q∈N(pi)

PR(q)
|L(q)|

Example uses d = 0.85.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 4 / 50

PageRank

Problem
Given a graph (P,L(P)) of pages P connected by links L(P), compute
the PageRank of each page in P .

Main Idea: Compute PageRanks iteratively until convergence.

0.15 0.08

0.09

0.28

0.03

0.04

0.28

Initially, all PageRanks are 1
|P | .

Update using PR(pi) =
1−d
|P | + d

∑
q∈N(pi)

PR(q)
|L(q)|

Example uses d = 0.85.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 4 / 50

PageRank

Problem
Given a graph (P,L(P)) of pages P connected by links L(P), compute
the PageRank of each page in P .

Main Idea: Compute PageRanks iteratively until convergence.

0.15 0.1

0.09

0.29

0.03

0.03

0.29

Initially, all PageRanks are 1
|P | .

Update using PR(pi) =
1−d
|P | + d

∑
q∈N(pi)

PR(q)
|L(q)|

Example uses d = 0.85.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 4 / 50

PageRank

Problem
Given a graph (P,L(P)) of pages P connected by links L(P), compute
the PageRank of each page in P .

Main Idea: Compute PageRanks iteratively until convergence.

0.15 0.09

0.09

0.29

0.03

0.03

0.29

Initially, all PageRanks are 1
|P | .

Update using PR(pi) =
1−d
|P | + d

∑
q∈N(pi)

PR(q)
|L(q)|

Example uses d = 0.85.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 4 / 50

PageRank

Problem
Given a graph (P,L(P)) of pages P connected by links L(P), compute
the PageRank of each page in P .

Main Idea: Compute PageRanks iteratively until convergence.

0.15 0.09

0.09

0.29

0.03

0.03

0.29

Initially, all PageRanks are 1
|P | .

Update using PR(pi) =
1−d
|P | + d

∑
q∈N(pi)

PR(q)
|L(q)|

Example uses d = 0.85.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 4 / 50

PageRank

bool done = false;
while (!done) { // Iterate until convergence
done = true;
for (int p = 0; p < N; ++p) { // Scan pages
// Accumulate weighted PageRanks of neighbors
double sum = 0;
for (int l = inEdgeList[p]; l < inEdgeList[p+1]; ++l) {

int q = inEdges[l];
sum += pageRank[q] / (outEdgeList[q+1] - outEdgeList[q]);

}
// Compute the new PageRank for p
double newPageRank = (1-d) / N + d * sum;
// If change to PageRank exceeds tolerance,
// update PageRank and ensure we reiterate.
if (abs(newPageRank - pageRank[p]) > tolerance) {

pageRank[p] = newPageRank;
done = false;

}
}

}

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 5 / 50

Parallel PageRank

Problem
How do we update PageRanks in parallel?

Step 1 Step 2 Step 3 . . .

0.14 0.14

0.14

0.14

0.14

0.14

0.14

0.12 0.14

0.14

0.14

0.14

0.14

0.14

0.12 0.14

0.14

0.14

0.14

0.14

0.14 . . .

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 6 / 50

Parallel PageRank

Problem
How do we update PageRanks in parallel?

Consider: What do we do to update a page’s PageRank?

0 1

2

3

4

5

6

Insight: Two pages that are not directly linked can be updated in
parallel.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 7 / 50

Parallel PageRank

Problem
How do we update PageRanks in parallel?

Consider: What do we do to update a page’s PageRank?

0 1

2

3

4

5

6

Insight: Two pages that are not directly linked can be updated in
parallel.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 7 / 50

Parallel PageRank

Problem
How do we update PageRanks in parallel?

Consider: What do we do to update a page’s PageRank?

0 1

2

3

4

5

6

Insight: Two pages that are not directly linked can be updated in
parallel.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 7 / 50

Parallel PageRank

Problem
How do we update PageRanks in parallel?

Consider: What do we do to update a page’s PageRank?

0.14 0.14

0.14

0.14

0.14

0.14

0.14

Insight: Two pages that are not directly linked can be updated in
parallel.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 7 / 50

Parallel PageRank

Problem
How do we update PageRanks in parallel?

Consider: What do we do to update a page’s PageRank?

0.12 0.14

0.14

0.14

0.06

0.14

0.14

Insight: Two pages that are not directly linked can be updated in
parallel.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 7 / 50

Parallel PageRank

Problem
How do we update PageRanks in parallel?

Consider: What do we do to update a page’s PageRank?

× ×

2

3

×

5

6

Insight: Two pages that are not directly linked can be updated in
parallel.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 7 / 50

Parallel PageRank

Problem
How do we update PageRanks in parallel?

Consider: What do we do to update a page’s PageRank?

× ×

2

3

×

5

6

Insight: Two pages that are not directly linked can be updated in
parallel.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 7 / 50

Parallel PageRank

Problem
How do we update PageRanks in parallel?

Consider: What do we do to update a page’s PageRank?

× ×

2

3

×

5

6

Insight: Two pages that are not directly linked can be updated in
parallel.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 7 / 50

Parallel PageRank

Problem
How do we update PageRanks in parallel?

Consider: What do we do to update a page’s PageRank?

× ×

2

3

×

5

6

Insight: Two pages that are not directly linked can be updated in
parallel.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 7 / 50

Parallel PageRank

Problem
How do we update PageRanks in parallel?

Consider: What do we do to update a page’s PageRank?

0.12 0.14

0.14

0.14

0.06

0.14

0.14

Insight: Two pages that are not directly linked can be updated in
parallel.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 7 / 50

Parallel PageRank

Problem
How do we update PageRanks in parallel?

Consider: What do we do to update a page’s PageRank?

0.12 0.14

0.07

0.26

0.06

0.05

0.14

Insight: Two pages that are not directly linked can be updated in
parallel.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 7 / 50

Parallel PageRank

Problem
How do we update PageRanks in parallel?

Consider: What do we do to update a page’s PageRank?

× ×

×

×

×

×

6

Insight: Two pages that are not directly linked can be updated in
parallel.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 7 / 50

Parallel PageRank

Problem
How do we update PageRanks in parallel?

Consider: What do we do to update a page’s PageRank?

× ×

×

×

×

×

6

Insight: Two pages that are not directly linked can be updated in
parallel.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 7 / 50

Parallel PageRank

Problem
How do we update PageRanks in parallel?

Consider: What do we do to update a page’s PageRank?

0.12 0.14

0.07

0.26

0.06

0.05

0.14

Insight: Two pages that are not directly linked can be updated in
parallel.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 7 / 50

Parallel PageRank

Problem
How do we update PageRanks in parallel?

Consider: What do we do to update a page’s PageRank?

0.12 0.14

0.07

0.26

0.06

0.05

0.28

Insight: Two pages that are not directly linked can be updated in
parallel.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 7 / 50

Parallel PageRank

Problem
How do we update PageRanks in parallel?

Consider: What do we do to update a page’s PageRank?

× ×

×

×

×

×

×

Insight: Two pages that are not directly linked can be updated in
parallel.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 7 / 50

Parallel PageRank

Problem
How do we update PageRanks in parallel?

Consider: What do we do to update a page’s PageRank?

0 1

2

3

4

5

6

Insight: Two pages that are not directly linked can be updated in
parallel.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 7 / 50

Parallel PageRank

Consider the sets of pages that can be updated in parallel.

0 1

2

3

4

5

6

These sets define a coloring of the (undirected) graph — an
assignment of labels, or colors, to the vertices of the graph such that
no two adjacent vertices have the same color.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 8 / 50

Parallel PageRank

Consider the sets of pages that can be updated in parallel.

0 1

2

3

4

5

6

These sets define a coloring of the (undirected) graph — an
assignment of labels, or colors, to the vertices of the graph such that
no two adjacent vertices have the same color.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 8 / 50

Parallel PageRank

Consider the sets of pages that can be updated in parallel.

0 1

2

3

4

5

6

a aa

These sets define a coloring of the (undirected) graph — an
assignment of labels, or colors, to the vertices of the graph such that
no two adjacent vertices have the same color.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 8 / 50

Parallel PageRank

Consider the sets of pages that can be updated in parallel.

× ×

2

3

×

5

6

a aa

These sets define a coloring of the (undirected) graph — an
assignment of labels, or colors, to the vertices of the graph such that
no two adjacent vertices have the same color.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 8 / 50

Parallel PageRank

Consider the sets of pages that can be updated in parallel.

× ×

2

3

×

5

6

a a

b

b

a

b

These sets define a coloring of the (undirected) graph — an
assignment of labels, or colors, to the vertices of the graph such that
no two adjacent vertices have the same color.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 8 / 50

Parallel PageRank

Consider the sets of pages that can be updated in parallel.

× ×

×

×

×

×

6

a a

b

b

a

b

These sets define a coloring of the (undirected) graph — an
assignment of labels, or colors, to the vertices of the graph such that
no two adjacent vertices have the same color.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 8 / 50

Parallel PageRank

Consider the sets of pages that can be updated in parallel.

× ×

×

×

×

×

6

a a

b

b

a

b

c

These sets define a coloring of the (undirected) graph — an
assignment of labels, or colors, to the vertices of the graph such that
no two adjacent vertices have the same color.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 8 / 50

Parallel PageRank

Consider the sets of pages that can be updated in parallel.

× ×

×

×

×

×

6

a a

b

b

a

b

c

These sets define a coloring of the (undirected) graph — an
assignment of labels, or colors, to the vertices of the graph such that
no two adjacent vertices have the same color.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 8 / 50

Outline

1 Chromatic Scheduling

2 Parallel PageRank

3 The Bag Data Structure

4 Simulating fluid flows

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 9 / 50

Outline

1 Chromatic Scheduling

2 Parallel PageRank

3 The Bag Data Structure

4 Simulating fluid flows

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 10 / 50

Coloring data graphs

Problem
Given a graph G = (V,E), perform iterative updates on the vertices
and edges of the graph in parallel while avoiding races.

Solution
Color the conflict graph, then process vertices of the same color in
parallel.

0 1

2

3

4

5

6

Two vertices u and v are
connected in the conflict
graph if processing u reads
or writes memory written by
processing v.

For PageRank: the conflict
graph is the undirected input
graph (P,L(P)).

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 10 / 50

Coloring data graphs

Problem
Given a graph G = (V,E), perform iterative updates on the vertices
and edges of the graph in parallel while avoiding races.

Solution
Color the conflict graph, then process vertices of the same color in
parallel.

× ×

2

3

×

5

6

Two vertices u and v are
connected in the conflict
graph if processing u reads
or writes memory written by
processing v.

For PageRank: the conflict
graph is the undirected input
graph (P,L(P)).

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 10 / 50

Coloring data graphs

Problem
Given a graph G = (V,E), perform iterative updates on the vertices
and edges of the graph in parallel while avoiding races.

Solution
Color the conflict graph, then process vertices of the same color in
parallel.

0 1

2

3

4

5

6

Two vertices u and v are
connected in the conflict
graph if processing u reads
or writes memory written by
processing v.

For PageRank: the conflict
graph is the undirected input
graph (P,L(P)).

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 10 / 50

Coloring data graphs

Problem
Given a graph G = (V,E), perform iterative updates on the vertices
and edges of the graph in parallel while avoiding races.

Solution
Color the conflict graph, then process vertices of the same color in
parallel.

0 1

2

3

4

5

6

Two vertices u and v are
connected in the conflict
graph if processing u reads
or writes memory written by
processing v.

For PageRank: the conflict
graph is the undirected input
graph (P,L(P)).

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 10 / 50

Why does coloring work?

An independent set is a set of vertices such that no two vertices in
the set are adjacent.

0 1

2

3

4

5

6

The vertices in an
independent set of the conflict
graph are not adjacent.
Processing these vertices
therefore does not cause a
race.
Coloring the conflict graph
ensures that no two connected
nodes share the same color.
By coloring the conflict graph,
each set of nodes of the same
color is an independent set.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 11 / 50

Outline

1 Chromatic Scheduling

2 Parallel PageRank

3 The Bag Data Structure

4 Simulating fluid flows

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 12 / 50

Back to parallel PageRank

Let’s summarize our parallel PageRank algorithm:

1 Color the conflict graph.
2 Process the colors serially, but process vertices of the same color

in parallel.

0 1

2

3

4

5

6

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 12 / 50

Back to parallel PageRank

Let’s summarize our parallel PageRank algorithm:
1 Color the conflict graph.

2 Process the colors serially, but process vertices of the same color
in parallel.

0 1

2

3

4

5

6

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 12 / 50

Back to parallel PageRank

Let’s summarize our parallel PageRank algorithm:
1 Color the conflict graph.

2 Process the colors serially, but process vertices of the same color
in parallel.

0 1

2

3

4

5

6

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 12 / 50

Back to parallel PageRank

Let’s summarize our parallel PageRank algorithm:
1 Color the conflict graph.

2 Process the colors serially, but process vertices of the same color
in parallel.

0 1

2

3

4

5

6

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 12 / 50

Back to parallel PageRank

Let’s summarize our parallel PageRank algorithm:
1 Color the conflict graph.
2 Process the colors serially, but process vertices of the same color

in parallel.

0 1

2

3

4

5

6

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 12 / 50

Back to parallel PageRank

Let’s summarize our parallel PageRank algorithm:
1 Color the conflict graph.
2 Process the colors serially, but process vertices of the same color

in parallel.

0 1

2

3

4

5

6

0 1

2

3

4

5

6

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 12 / 50

Back to parallel PageRank

Let’s summarize our parallel PageRank algorithm:
1 Color the conflict graph.
2 Process the colors serially, but process vertices of the same color

in parallel.

0 1

2

3

4

5

6

0 1

2

3

4

5

6

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 12 / 50

Back to parallel PageRank

Let’s summarize our parallel PageRank algorithm:
1 Color the conflict graph.
2 Process the colors serially, but process vertices of the same color

in parallel.

0 1

2

3

4

5

6

0.14 0.14

0.14

0.14

0.14

0.14

0.14

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 12 / 50

Back to parallel PageRank

Let’s summarize our parallel PageRank algorithm:
1 Color the conflict graph.
2 Process the colors serially, but process vertices of the same color

in parallel.

0 1

2

3

4

5

6

0.12 0.14

0.14

0.14

0.06

0.14

0.14

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 12 / 50

Back to parallel PageRank

Let’s summarize our parallel PageRank algorithm:
1 Color the conflict graph.
2 Process the colors serially, but process vertices of the same color

in parallel.

0 1

2

3

4

5

6

× ×

2

3

×

5

6

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 12 / 50

Back to parallel PageRank

Let’s summarize our parallel PageRank algorithm:
1 Color the conflict graph.
2 Process the colors serially, but process vertices of the same color

in parallel.

0 1

2

3

4

5

6

× ×

2

3

×

5

6

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 12 / 50

Back to parallel PageRank

Let’s summarize our parallel PageRank algorithm:
1 Color the conflict graph.
2 Process the colors serially, but process vertices of the same color

in parallel.

0 1

2

3

4

5

6

0.12 0.14

0.14

0.14

0.06

0.14

0.14

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 12 / 50

Back to parallel PageRank

Let’s summarize our parallel PageRank algorithm:
1 Color the conflict graph.
2 Process the colors serially, but process vertices of the same color

in parallel.

0 1

2

3

4

5

6

0.12 0.14

0.07

0.26

0.06

0.05

0.14

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 12 / 50

Back to parallel PageRank

Let’s summarize our parallel PageRank algorithm:
1 Color the conflict graph.
2 Process the colors serially, but process vertices of the same color

in parallel.

0 1

2

3

4

5

6

× ×

×

×

×

×

6

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 12 / 50

Back to parallel PageRank

Let’s summarize our parallel PageRank algorithm:
1 Color the conflict graph.
2 Process the colors serially, but process vertices of the same color

in parallel.

0 1

2

3

4

5

6

× ×

×

×

×

×

6

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 12 / 50

Back to parallel PageRank

Let’s summarize our parallel PageRank algorithm:
1 Color the conflict graph.
2 Process the colors serially, but process vertices of the same color

in parallel.

0 1

2

3

4

5

6

0.12 0.14

0.07

0.26

0.06

0.05

0.14

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 12 / 50

Back to parallel PageRank

Let’s summarize our parallel PageRank algorithm:
1 Color the conflict graph.
2 Process the colors serially, but process vertices of the same color

in parallel.

0 1

2

3

4

5

6

0.12 0.14

0.07

0.26

0.06

0.05

0.28

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 12 / 50

Back to parallel PageRank

Let’s summarize our parallel PageRank algorithm:
1 Color the conflict graph.
2 Process the colors serially, but process vertices of the same color

in parallel.

0 1

2

3

4

5

6

× ×

×

×

×

×

×

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 12 / 50

Back to parallel PageRank

int numColors = colorGraph(); // Color the graph
bool done = false;
while (!done) { // Iterate until convergence
cilk::reducer< cilk::opand<bool> > done_r();

// Process colors serially
for (int c = 0; c < numColors; ++c) {
// Process pages of same color in parallel
cilk_for (int i = 0; i < numColoredPages[c]; ++i) {

int p = coloredPages[c][i];
int newPageRank = computePageRank(p);
if (abs(newPageRank - pageRank[p]) > tolerance) {

pageRank[p] = newPageRank;
*done_r &= false;

} } }
done_r.move_out(done);

}

Question: Why don’t we need to recolor the graph each iteration?
Answer: The graph is static, so the same coloring always works.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 13 / 50

Back to parallel PageRank

int numColors = colorGraph(); // Color the graph
bool done = false;
while (!done) { // Iterate until convergence
cilk::reducer< cilk::opand<bool> > done_r();

// Process colors serially
for (int c = 0; c < numColors; ++c) {
// Process pages of same color in parallel
cilk_for (int i = 0; i < numColoredPages[c]; ++i) {

int p = coloredPages[c][i];
int newPageRank = computePageRank(p);
if (abs(newPageRank - pageRank[p]) > tolerance) {

pageRank[p] = newPageRank;
*done_r &= false;

} } }
done_r.move_out(done);

}

Question: Why don’t we need to recolor the graph each iteration?

Answer: The graph is static, so the same coloring always works.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 13 / 50

Back to parallel PageRank

int numColors = colorGraph(); // Color the graph
bool done = false;
while (!done) { // Iterate until convergence
cilk::reducer< cilk::opand<bool> > done_r();

// Process colors serially
for (int c = 0; c < numColors; ++c) {
// Process pages of same color in parallel
cilk_for (int i = 0; i < numColoredPages[c]; ++i) {

int p = coloredPages[c][i];
int newPageRank = computePageRank(p);
if (abs(newPageRank - pageRank[p]) > tolerance) {

pageRank[p] = newPageRank;
*done_r &= false;

} } }
done_r.move_out(done);

}

Question: Why don’t we need to recolor the graph each iteration?
Answer: The graph is static, so the same coloring always works.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 13 / 50

Performance of parallel PageRank

What’s the theoretical performance of this parallel PageRank?

To update all PageRanks in a graph (P,L(P)) in a single iteration:
Work:

W = Θ(P + L(P))

Span:

S = 〈number of colors〉 · 〈span to process one color〉

We can process all pages Pa of color a in span O(lgPa).
Question: How many colors do we need?

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 14 / 50

Performance of parallel PageRank

What’s the theoretical performance of this parallel PageRank?

To update all PageRanks in a graph (P,L(P)) in a single iteration:
Work: W = Θ(P + L(P))
Span:

S = 〈number of colors〉 · 〈span to process one color〉

We can process all pages Pa of color a in span O(lgPa).
Question: How many colors do we need?

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 14 / 50

Performance of parallel PageRank

What’s the theoretical performance of this parallel PageRank?

To update all PageRanks in a graph (P,L(P)) in a single iteration:
Work: W = Θ(P + L(P))
Span: S = 〈number of colors〉 · 〈span to process one color〉

We can process all pages Pa of color a in span O(lgPa).
Question: How many colors do we need?

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 14 / 50

Performance of parallel PageRank

What’s the theoretical performance of this parallel PageRank?

To update all PageRanks in a graph (P,L(P)) in a single iteration:
Work: W = Θ(P + L(P))
Span: S = 〈number of colors〉 · 〈span to process one color〉

We can process all pages Pa of color a in span O(lgPa).

Question: How many colors do we need?

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 14 / 50

Performance of parallel PageRank

What’s the theoretical performance of this parallel PageRank?

To update all PageRanks in a graph (P,L(P)) in a single iteration:
Work: W = Θ(P + L(P))
Span: S = 〈number of colors〉 · 〈span to process one color〉

We can process all pages Pa of color a in span O(lgPa).
Question: How many colors do we need?

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 14 / 50

Number of colors

Question: How many colors are needed to color a graph G = (V,E)?

0 1

2

3

4

5

6 7

8

Give each vertex its own color.

Uses |V | colors in total.
Equivalent to processing the
graph serially.

If ∆ is the maximum degree of
any vertex in V , we can color
G using ∆ + 1 colors.
Finding the minimum coloring
of a general graph is
NP-complete, but we don’t
necessarily need a minimum
coloring.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 15 / 50

Number of colors

Question: How many colors are needed to color a graph G = (V,E)?

0 1

2

3

4

5

6 7

8

Give each vertex its own color.

Uses |V | colors in total.
Equivalent to processing the
graph serially.

If ∆ is the maximum degree of
any vertex in V , we can color
G using ∆ + 1 colors.
Finding the minimum coloring
of a general graph is
NP-complete, but we don’t
necessarily need a minimum
coloring.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 15 / 50

Number of colors

Question: How many colors are needed to color a graph G = (V,E)?

0 1

2

3

4

5

6 7

8

Give each vertex its own color.

Uses |V | colors in total.
Equivalent to processing the
graph serially.

If ∆ is the maximum degree of
any vertex in V , we can color
G using ∆ + 1 colors.
Finding the minimum coloring
of a general graph is
NP-complete, but we don’t
necessarily need a minimum
coloring.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 15 / 50

Number of colors

Question: How many colors are needed to color a graph G = (V,E)?

3 4

0

1

0

1

2 2

3

Give each vertex its own color.

Uses |V | colors in total.
Equivalent to processing the
graph serially.

If ∆ is the maximum degree of
any vertex in V , we can color
G using ∆ + 1 colors.

Finding the minimum coloring
of a general graph is
NP-complete, but we don’t
necessarily need a minimum
coloring.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 15 / 50

Number of colors

Question: How many colors are needed to color a graph G = (V,E)?

3 4

0

1

0

1

2 2

3

Give each vertex its own color.

Uses |V | colors in total.
Equivalent to processing the
graph serially.

If ∆ is the maximum degree of
any vertex in V , we can color
G using ∆ + 1 colors.
Finding the minimum coloring
of a general graph is
NP-complete, but we don’t
necessarily need a minimum
coloring.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 15 / 50

Serial coloring algorithm

Question: How do we find a ∆ + 1 coloring of a graph G (serially)?

Answer: Greedily pick the smallest available color for each node.

0 1

2

3

4

5

6 7

8

This algorithm is guaranteed to find a ∆ + 1 coloring, although it may
do better.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 16 / 50

Serial coloring algorithm

Question: How do we find a ∆ + 1 coloring of a graph G (serially)?
Answer: Greedily pick the smallest available color for each node.

0 1

2

3

4

5

6 7

8

This algorithm is guaranteed to find a ∆ + 1 coloring, although it may
do better.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 16 / 50

Serial coloring algorithm

Question: How do we find a ∆ + 1 coloring of a graph G (serially)?
Answer: Greedily pick the smallest available color for each node.

This algorithm is guaranteed to find a ∆ + 1 coloring, although it may
do better.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 16 / 50

Serial coloring algorithm

Question: How do we find a ∆ + 1 coloring of a graph G (serially)?
Answer: Greedily pick the smallest available color for each node.

This algorithm is guaranteed to find a ∆ + 1 coloring, although it may
do better.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 16 / 50

Serial coloring algorithm

Question: How do we find a ∆ + 1 coloring of a graph G (serially)?
Answer: Greedily pick the smallest available color for each node.

0

This algorithm is guaranteed to find a ∆ + 1 coloring, although it may
do better.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 16 / 50

Serial coloring algorithm

Question: How do we find a ∆ + 1 coloring of a graph G (serially)?
Answer: Greedily pick the smallest available color for each node.

0

This algorithm is guaranteed to find a ∆ + 1 coloring, although it may
do better.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 16 / 50

Serial coloring algorithm

Question: How do we find a ∆ + 1 coloring of a graph G (serially)?
Answer: Greedily pick the smallest available color for each node.

0 1

This algorithm is guaranteed to find a ∆ + 1 coloring, although it may
do better.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 16 / 50

Serial coloring algorithm

Question: How do we find a ∆ + 1 coloring of a graph G (serially)?
Answer: Greedily pick the smallest available color for each node.

0 1

This algorithm is guaranteed to find a ∆ + 1 coloring, although it may
do better.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 16 / 50

Serial coloring algorithm

Question: How do we find a ∆ + 1 coloring of a graph G (serially)?
Answer: Greedily pick the smallest available color for each node.

0 1

0

This algorithm is guaranteed to find a ∆ + 1 coloring, although it may
do better.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 16 / 50

Serial coloring algorithm

Question: How do we find a ∆ + 1 coloring of a graph G (serially)?
Answer: Greedily pick the smallest available color for each node.

0 1

0

This algorithm is guaranteed to find a ∆ + 1 coloring, although it may
do better.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 16 / 50

Serial coloring algorithm

Question: How do we find a ∆ + 1 coloring of a graph G (serially)?
Answer: Greedily pick the smallest available color for each node.

0 1

0

1

This algorithm is guaranteed to find a ∆ + 1 coloring, although it may
do better.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 16 / 50

Serial coloring algorithm

Question: How do we find a ∆ + 1 coloring of a graph G (serially)?
Answer: Greedily pick the smallest available color for each node.

0 1

0

1

This algorithm is guaranteed to find a ∆ + 1 coloring, although it may
do better.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 16 / 50

Serial coloring algorithm

Question: How do we find a ∆ + 1 coloring of a graph G (serially)?
Answer: Greedily pick the smallest available color for each node.

0 1

0

1

1

This algorithm is guaranteed to find a ∆ + 1 coloring, although it may
do better.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 16 / 50

Serial coloring algorithm

Question: How do we find a ∆ + 1 coloring of a graph G (serially)?
Answer: Greedily pick the smallest available color for each node.

0 1

0

1

1

This algorithm is guaranteed to find a ∆ + 1 coloring, although it may
do better.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 16 / 50

Serial coloring algorithm

Question: How do we find a ∆ + 1 coloring of a graph G (serially)?
Answer: Greedily pick the smallest available color for each node.

0 1

0

1

1

2

This algorithm is guaranteed to find a ∆ + 1 coloring, although it may
do better.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 16 / 50

Serial coloring algorithm

Question: How do we find a ∆ + 1 coloring of a graph G (serially)?
Answer: Greedily pick the smallest available color for each node.

0 1

0

1

1

2

This algorithm is guaranteed to find a ∆ + 1 coloring, although it may
do better.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 16 / 50

Serial coloring algorithm

Question: How do we find a ∆ + 1 coloring of a graph G (serially)?
Answer: Greedily pick the smallest available color for each node.

0 1

0

1

1

2

3

This algorithm is guaranteed to find a ∆ + 1 coloring, although it may
do better.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 16 / 50

Serial coloring algorithm

Question: How do we find a ∆ + 1 coloring of a graph G (serially)?
Answer: Greedily pick the smallest available color for each node.

0 1

0

1

1

2

3

This algorithm is guaranteed to find a ∆ + 1 coloring, although it may
do better.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 16 / 50

Serial coloring algorithm

Question: How do we find a ∆ + 1 coloring of a graph G (serially)?
Answer: Greedily pick the smallest available color for each node.

0 1

0

1

1

2

3 0

This algorithm is guaranteed to find a ∆ + 1 coloring, although it may
do better.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 16 / 50

Serial coloring algorithm

Question: How do we find a ∆ + 1 coloring of a graph G (serially)?
Answer: Greedily pick the smallest available color for each node.

0 1

0

1

1

2

3 0

This algorithm is guaranteed to find a ∆ + 1 coloring, although it may
do better.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 16 / 50

Serial coloring algorithm

Question: How do we find a ∆ + 1 coloring of a graph G (serially)?
Answer: Greedily pick the smallest available color for each node.

0 1

0

1

1

2

3 0

2

This algorithm is guaranteed to find a ∆ + 1 coloring, although it may
do better.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 16 / 50

Serial coloring algorithm

Question: How do we find a ∆ + 1 coloring of a graph G (serially)?
Answer: Greedily pick the smallest available color for each node.

0 1

0

1

1

2

3 0

2

This algorithm is guaranteed to find a ∆ + 1 coloring, although it may
do better.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 16 / 50

Serial coloring algorithm

Question: How do we find a ∆ + 1 coloring of a graph G (serially)?
Answer: Greedily pick the smallest available color for each node.

0 1

0

1

1

2

3 0

2

This algorithm is guaranteed to find a ∆ + 1 coloring, although it may
do better.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 16 / 50

Serial coloring algorithm

char usedColors[maxDegree];
memset(usedColors, 0, maxDegree);
for (int i = 0; i < N; ++i) { // Scan vertices
int degree = nodes[i+1] - nodes[i];
// Tally colors of neighbors
for (int j = nodes[i]; j < nodes[i+1]; ++j) {
if (colors[edges[j]] < degree)
usedColors[colors[edges[j]]] = 1;

}
int color;
for (color = 0; color < degree; ++color) {
if (usedColors[color] == 0)
break;

}
colors[i] = color;
memset(usedColors, 0, degree);

}

Work:

W = Θ(V + E)

Work-efficient
parallel coloring
algorithms are
possible.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 17 / 50

Serial coloring algorithm

char usedColors[maxDegree];
memset(usedColors, 0, maxDegree);
for (int i = 0; i < N; ++i) { // Scan vertices
int degree = nodes[i+1] - nodes[i];
// Tally colors of neighbors
for (int j = nodes[i]; j < nodes[i+1]; ++j) {
if (colors[edges[j]] < degree)
usedColors[colors[edges[j]]] = 1;

}
int color;
for (color = 0; color < degree; ++color) {
if (usedColors[color] == 0)
break;

}
colors[i] = color;
memset(usedColors, 0, degree);

}

Work:

W = Θ(V + E)
Work-efficient
parallel coloring
algorithms are
possible.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 17 / 50

Serial coloring algorithm

char usedColors[maxDegree];
memset(usedColors, 0, maxDegree);
for (int i = 0; i < N; ++i) { // Scan vertices
int degree = nodes[i+1] - nodes[i];
// Tally colors of neighbors
for (int j = nodes[i]; j < nodes[i+1]; ++j) {
if (colors[edges[j]] < degree)
usedColors[colors[edges[j]]] = 1;

}
int color;
for (color = 0; color < degree; ++color) {
if (usedColors[color] == 0)
break;

}
colors[i] = color;
memset(usedColors, 0, degree);

}

Work:
W = Θ(V + E)

Work-efficient
parallel coloring
algorithms are
possible.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 17 / 50

Serial coloring algorithm

char usedColors[maxDegree];
memset(usedColors, 0, maxDegree);
for (int i = 0; i < N; ++i) { // Scan vertices
int degree = nodes[i+1] - nodes[i];
// Tally colors of neighbors
for (int j = nodes[i]; j < nodes[i+1]; ++j) {
if (colors[edges[j]] < degree)
usedColors[colors[edges[j]]] = 1;

}
int color;
for (color = 0; color < degree; ++color) {
if (usedColors[color] == 0)
break;

}
colors[i] = color;
memset(usedColors, 0, degree);

}

Work:
W = Θ(V + E)
Work-efficient
parallel coloring
algorithms are
possible.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 17 / 50

Performance of parallel PageRank

Theoretical performance:

To update all PageRanks in a graph (P,L(P)) in a single iteration:
Work: W = Θ(P + L(P))
Span:
S = 〈number of colors〉 · 〈span to process one color〉 = O(∆ lgP/∆)

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 18 / 50

Advantages of chromatic scheduling

Chromatic scheduling offers many nice properties.

For a static graph, the same coloring always works. Computing a
chromatic schedule can be done as precomputation.

Coloring is relatively cheap when the work and span of the main
computation exceeds the work of the work-efficient serial coloring
algorithm.
Work-efficient parallel coloring algorithms are also possible.

Processing the colors in the same order every time processes the
graph deterministically.
Chromatic scheduling handles many problems that can be viewed
as performing local updates to vertices and edges in a graph,
including Loopy belief propagation, Gibbs sampling, fluid
dynamics simulation, and many machine-learning algorithms.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 19 / 50

Outline

1 Chromatic Scheduling

2 Parallel PageRank

3 The Bag Data Structure

4 Simulating fluid flows

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 20 / 50

Optimizing parallel PageRank

Question: Can we improve our parallel PageRank code?
Iteration 1 Iteration 2 . . .

Color 0 0 1

2

3

4

5

6

0 1

2

3

4

5

6

. . .

Color 1 × ×

2

3

×

5

6

× ×

2

3

×

5

6

. . .

Color 2 × ×

×

×

×

×

6

× ×

×

×

×

×

6

. . .

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 20 / 50

Optimizing parallel PageRank

Question: Can we improve our parallel PageRank code?
Consider: Which PageRanks change significantly (by more than the
threshold) after the first iteration?

After Iteration 1:

0.12 0.14

0.07

0.26

0.06

0.05

0.28

Idea: If a page’s PageRank
converges, don’t reprocess it
immediately.

Avoid unnecessary work when
computing PageRanks.

Only process a page if the
PageRank of a neighboring
page changes.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 21 / 50

Optimizing parallel PageRank

Question: Can we improve our parallel PageRank code?
Consider: Which PageRanks change significantly (by more than the
threshold) after the first iteration?

Iteration 2 significant updates:

0.15 0.08

0.09

0.28

0.03

0.04

0.28

Idea: If a page’s PageRank
converges, don’t reprocess it
immediately.

Avoid unnecessary work when
computing PageRanks.

Only process a page if the
PageRank of a neighboring
page changes.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 21 / 50

Optimizing parallel PageRank

Question: Can we improve our parallel PageRank code?
Consider: Which PageRanks change significantly (by more than the
threshold) after the first iteration?

Iteration 3 significant updates:

0.15 0.1

0.09

0.29

0.03

0.03

0.29

Idea: If a page’s PageRank
converges, don’t reprocess it
immediately.

Avoid unnecessary work when
computing PageRanks.

Only process a page if the
PageRank of a neighboring
page changes.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 21 / 50

Optimizing parallel PageRank

Question: Can we improve our parallel PageRank code?
Consider: Which PageRanks change significantly (by more than the
threshold) after the first iteration?

Iteration 4 significant updates:

0.15 0.09

0.09

0.29

0.03

0.03

0.29

Idea: If a page’s PageRank
converges, don’t reprocess it
immediately.

Avoid unnecessary work when
computing PageRanks.

Only process a page if the
PageRank of a neighboring
page changes.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 21 / 50

Optimizing parallel PageRank

Question: Can we improve our parallel PageRank code?
Consider: Which PageRanks change significantly (by more than the
threshold) after the first iteration?

Iteration 4 significant updates:

0.15 0.09

0.09

0.29

0.03

0.03

0.29

Idea: If a page’s PageRank
converges, don’t reprocess it
immediately.

Avoid unnecessary work when
computing PageRanks.

Only process a page if the
PageRank of a neighboring
page changes.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 21 / 50

Optimizing parallel PageRank

Question: Can we improve our parallel PageRank code?
Consider: Which PageRanks change significantly (by more than the
threshold) after the first iteration?

Iteration 4 significant updates:

0.15 0.09

0.09

0.29

0.03

0.03

0.29

Idea: If a page’s PageRank
converges, don’t reprocess it
immediately.

Avoid unnecessary work when
computing PageRanks.
Only process a page if the
PageRank of a neighboring
page changes.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 21 / 50

Optimizing parallel PageRank

Idea: Only process a page if the PageRank of a neighboring page
changes.
Problem: How do we efficiently track which pages need to be
processed on the next iteration?

Solution: Use a bag.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 22 / 50

Optimizing parallel PageRank

Idea: Only process a page if the PageRank of a neighboring page
changes.
Problem: How do we efficiently track which pages need to be
processed on the next iteration?
Solution: Use a bag.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 22 / 50

Storing a set

A bag is a multi-set data structure that supports the following special
operations:

Bag_Create() Create a new, empty bag.
Bag_Insert() Add an element to a bag.
Bag_Split() Divide a bag into two approximately-equal-size bags.
Bag_Union() Combine the contents of two bags into a single bag.

Idea: Use bags to store vertices to process in each iteration.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 23 / 50

Using a bag

Idea: Use bags to store vertices to process in each iteration.

Bag_Split() allows for efficient parallel traversal of the elements of the
bag.

void processBag(Bag<int> *b) {
if (b->size < threshold) {
// Process bag’s contents serially

} else {
// Destructively split the bag
Bag<int> *b2 = b->Bag_Split();
cilk_spawn processBag(b);
processBag(b2);
cilk_sync;

}
}

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 24 / 50

Using a bag

Idea: Use bags to store vertices to process in each iteration.

A bag supports parallel insertions when used as a reducer.
void processBag(Bag<int> *in,

Bag_reducer<int> *out) {
if (b->size < threshold) {
// Process bag’s contents serially
out->Bag_Insert(/* . . . */);

} else {
// Destructively split the bag
Bag<int> *in2 = in->Bag_Split();
cilk_spawn processBag(in, out);
processBag(in2, out);
cilk_sync;

}
}

The bag reducer
corresponds to the set
monoid (S,∪, ∅), where
S is the set of sets.
Bag_Union() implements
the reduce operation for
the bag reducer.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 25 / 50

Using bags with coloring

Idea: Use an array of bags such that there are two bags — one “input”
and one “output” — for each color.

bags[0][0] bags[0][1] bags[0][2]

bags[1][0] bags[1][1] bags[1][2]

Input bags:

Output bags:

Process & empty

Populate

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 26 / 50

Using bags with coloring

Idea: Use an array of bags such that there are two bags — one “input”
and one “output” — for each color.

bags[0][0] bags[0][1] bags[0][2]

bags[1][0] bags[1][1] bags[1][2]

Input bags:

Output bags:

Process & empty

Populate

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 26 / 50

Using bags with coloring

Idea: Use an array of bags such that there are two bags — one “input”
and one “output” — for each color.

bags[0][0] bags[0][1] bags[0][2]

bags[1][0] bags[1][1] bags[1][2]

Input bags:

Output bags:

Process & empty

Populate

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 26 / 50

Using bags with coloring

Idea: Use an array of bags such that there are two bags — one “input”
and one “output” — for each color.

bags[0][0] bags[0][1] bags[0][2]

bags[1][0] bags[1][1] bags[1][2]

Input bags:

Output bags:

Swap

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 26 / 50

Using bags with coloring

Idea: Use an array of bags such that there are two bags — one “input”
and one “output” — for each color.

bags[0][0] bags[0][1] bags[0][2]

bags[1][0] bags[1][1] bags[1][2]Input bags:

Output bags:

Process & empty

Populate

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 26 / 50

Using bags with coloring

Idea: Use an array of bags such that there are two bags — one “input”
and one “output” — for each color.

bags[0][0] bags[0][1] bags[0][2]

bags[1][0] bags[1][1] bags[1][2]Input bags:

Output bags:

Process & empty

Populate

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 26 / 50

Using bags with coloring

Idea: Use an array of bags such that there are two bags — one “input”
and one “output” — for each color.

bags[0][0] bags[0][1] bags[0][2]

bags[1][0] bags[1][1] bags[1][2]Input bags:

Output bags:

Process & empty

Populate

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 26 / 50

Using bags with coloring

Idea: Use an array of bags such that there are two bags — one “input”
and one “output” — for each color.

bags[0][0] bags[0][1] bags[0][2]

bags[1][0] bags[1][1] bags[1][2]

Output bags:

Input bags:

Swap

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 26 / 50

Using bags with coloring

Problem: There is a “race” on inserting a vertex into a bag.

0

12

Both vertices 1 and 2 may attempt to add
vertex 0 to their own local view of an
output bag.
This is not technically a determinacy race,
but it can cause problems.

One possible solution: Use a lock or atomic operation to avoid
duplicating elements in the bag or processing both duplicates.

This is nondeterministic code, but
The input graph is still updated deterministically in a manner
consistent with a serial execution.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 27 / 50

Using bags with coloring

Problem: There is a “race” on inserting a vertex into a bag.

0

12

Both vertices 1 and 2 may attempt to add
vertex 0 to their own local view of an
output bag.
This is not technically a determinacy race,
but it can cause problems.

One possible solution: Use a lock or atomic operation to avoid
duplicating elements in the bag or processing both duplicates.

This is nondeterministic code, but
The input graph is still updated deterministically in a manner
consistent with a serial execution.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 27 / 50

The bag data structure

Question: How does the bag work?

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 28 / 50

The bag data structure

+ =

yx
y

x

A bag is made up of pennants — complete binary trees with extra root
nodes — which store the elements.

Pennants may be split and combined in Θ(1) time by changing
pointers.
A pennant is only ever combined with another pennant of the
same size.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 29 / 50

The bag data structure

A bag is an array of pointers to pennants.
The ith entry in the array is either NULL or points to a pennant of
size 2i.
Intuitively, a bag acts much like a binary counter.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 30 / 50

The bag data structure — Bag_Insert()

Inserting an element works similarly to incrementing a binary number.
+

=

Bag_Insert() runs in O(1) amortized time and O(lg n) worst-case time.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 31 / 50

The bag data structure — Bag_Insert()

+

=

+

=

+

=

+

=

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 32 / 50

The bag data structure — Bag_Split()

Splitting a bag works similarly to an arithmetic right shift.

= +

+

Bag_Split() runs in O(lg n) time.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 33 / 50

The bag data structure — Bag_Union()

Unioning two bags is works similarly to adding two binary numbers.

+ =

Bag_Union() works in O(lg n) time.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 34 / 50

Nondeterminism of bags

Notice: When used as a reducer, the order of elements in a bag is
nondeterministic.

Bags are “logically” deterministic in that the presence of an
element in a bag is deterministic.
Bags encapsulate this nondeterminism and provide the
abstraction of an unordered multi-set.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 35 / 50

Optimizing the bag data structure

Bags can be made more efficient in practice by storing an array at
each node.

Each node in a pennant stores a fixed-size array of data, which is
guaranteed to be full.
The bag stores an extra fixed-size array of data, called the
hopper , which may not be full.
Inserts first attempt to insert into the hopper. Once the hopper is
full, a new, empty hopper is created while the old hopper is
inserted into the bag using the original algorithm.

With this optimization, the common case for Bag_Insert() is identical
to pushing an element onto a FIFO queue.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 36 / 50

Performance of parallel PageRank

Actual performance of PageRank on a “power law” graph of 1M
vertices and 10M edges (both perform 1.25× 107 updates):

Version T1 (s) T12 (s)
Serial 28.7
Chromatic 33.9 4.27

Breakdown of parallel PageRank performance (11 colors used):

T1 (s) T12 (s)
Coloring 3.25 0.67
Iterations 30.60 3.60

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 37 / 50

Outline

1 Chromatic Scheduling

2 Parallel PageRank

3 The Bag Data Structure

4 Simulating fluid flows

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 38 / 50

fluidanimate

To goal of fluidanimate is to solve the problem:

Problem
Simulate the flow of a fluid over time.

To simulate the flow of a fluid, fluidanimate uses smoothed-particle
hydrodynamics, which

divides the fluid into discrete units, called particles, and
approximates any physical property of the system by summing
over the pairwise interactions of nearby particles.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 38 / 50

fluidanimate

Using smoothed-particle hydrodynamics, fluidanimate simulates a
fluid flow as follows.

Pseudocode
1 For each particle, approximate the physical properties — forces,

density, vorticity, velocity, etc. — on that particle.
2 Use these velocities to move each particle over a small time step.
3 Repeat.

Approximately 90% of the total execution time of fluidanimate is spent
executing inside Step 1. Let’s parallelize this step!

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 39 / 50

fluidanimate

Simplified problem statement
Given a set of particles in space that interact pairwise with nearby
particles only, compute all of their pairwise interactions f(a, b).

For any two particles a and b, their
interaction f(a, b) has the following
properties.

f(a, b) is nonnegligible only if a and
b are physically close.
f(a, b) is symmetric:
f(a, b) = −f(b, a).
f(a, b) takes Θ(1) time to compute in
theory.
f(a, b) is expensive to compute in
practice.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 40 / 50

fluidanimate

Simplified problem statement
Given a set of particles in space that interact pairwise with nearby
particles only, compute all of their pairwise interactions f(a, b).

a

For any two particles a and b, their
interaction f(a, b) has the following
properties.

f(a, b) is nonnegligible only if a and
b are physically close.
f(a, b) is symmetric:
f(a, b) = −f(b, a).
f(a, b) takes Θ(1) time to compute in
theory.
f(a, b) is expensive to compute in
practice.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 40 / 50

fluidanimate

Simplified problem statement
Given a set of particles in space that interact pairwise with nearby
particles only, compute all of their pairwise interactions f(a, b).

For any two particles a and b, their
interaction f(a, b) has the following
properties.

f(a, b) is nonnegligible only if a and
b are physically close.
f(a, b) is symmetric:
f(a, b) = −f(b, a).
f(a, b) takes Θ(1) time to compute in
theory.
f(a, b) is expensive to compute in
practice.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 40 / 50

fluidanimate

Simplified problem statement
Given a set of particles in space that interact pairwise with nearby
particles only, compute all of their pairwise interactions f(a, b).

For any two particles a and b, their
interaction f(a, b) has the following
properties.

f(a, b) is nonnegligible only if a and
b are physically close.
f(a, b) is symmetric:
f(a, b) = −f(b, a).
f(a, b) takes Θ(1) time to compute in
theory.
f(a, b) is expensive to compute in
practice.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 40 / 50

fluidanimate

Simplified problem statement
Given a set of particles in space that interact pairwise with nearby
particles only, compute all of their pairwise interactions f(a, b).

a
b

For any two particles a and b, their
interaction f(a, b) has the following
properties.

f(a, b) is nonnegligible only if a and
b are physically close.
f(a, b) is symmetric:
f(a, b) = −f(b, a).
f(a, b) takes Θ(1) time to compute in
theory.
f(a, b) is expensive to compute in
practice.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 40 / 50

fluidanimate

Simplified problem statement
Given a set of particles in space that interact pairwise with nearby
particles only, compute all of their pairwise interactions f(a, b).

a
b

f(a, b)

f(b, a) = −f(a, b)

For any two particles a and b, their
interaction f(a, b) has the following
properties.

f(a, b) is nonnegligible only if a and
b are physically close.
f(a, b) is symmetric:
f(a, b) = −f(b, a).
f(a, b) takes Θ(1) time to compute in
theory.
f(a, b) is expensive to compute in
practice.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 40 / 50

fluidanimate

Problem: How do we track which particles are physically close?

Solution: Partition space with a static
Θ(n)×Θ(n) grid.

Expected Θ(1) particles per grid cell.
Only consider interactions between
particles in same cell and adjacent
cells.
Intuitively, writing to a cell involves
reading all cells in the 3× 3 square
enclosing that cell.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 41 / 50

fluidanimate

Problem: How do we track which particles are physically close?

Solution: Partition space with a static
Θ(n)×Θ(n) grid.

Expected Θ(1) particles per grid cell.
Only consider interactions between
particles in same cell and adjacent
cells.
Intuitively, writing to a cell involves
reading all cells in the 3× 3 square
enclosing that cell.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 41 / 50

fluidanimate

Problem: How do we track which particles are physically close?

Solution: Partition space with a static
Θ(n)×Θ(n) grid.

Expected Θ(1) particles per grid cell.
Only consider interactions between
particles in same cell and adjacent
cells.
Intuitively, writing to a cell involves
reading all cells in the 3× 3 square
enclosing that cell.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 41 / 50

fluidanimate

Problem: How do we track which particles are physically close?

Solution: Partition space with a static
Θ(n)×Θ(n) grid.

Expected Θ(1) particles per grid cell.
Only consider interactions between
particles in same cell and adjacent
cells.
Intuitively, writing to a cell involves
reading all cells in the 3× 3 square
enclosing that cell.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 41 / 50

fluidanimate

Problem: How do we track which particles are physically close?

Solution: Partition space with a static
Θ(n)×Θ(n) grid.

Expected Θ(1) particles per grid cell.
Only consider interactions between
particles in same cell and adjacent
cells.
Intuitively, writing to a cell involves
reading all cells in the 3× 3 square
enclosing that cell.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 41 / 50

fluidanimate

Problem: How do we track which particles are physically close?

Solution: Partition space with a static
Θ(n)×Θ(n) grid.

Expected Θ(1) particles per grid cell.
Only consider interactions between
particles in same cell and adjacent
cells.
Intuitively, writing to a cell involves
reading all cells in the 3× 3 square
enclosing that cell.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 41 / 50

fluidanimate

Key optimization: For each pair of particles a and b, compute f(a, b)
once, then write f(a, b) to a and −f(a, b) to b.

a
b

f(a, b)

f(b, a) = −f(a, b)

This optimization intuitively cuts the work
of computing all interactions f(a, b) in
half.

Performance Data:
Optimization T1 (s)
Without 6.41
With 4.85

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 42 / 50

fluidanimate

Key optimization: For each pair of particles a and b, compute f(a, b)
once, then write f(a, b) to a and −f(a, b) to b.

a
b f(a, b)

This optimization intuitively cuts the work
of computing all interactions f(a, b) in
half.

Performance Data:
Optimization T1 (s)
Without 6.41
With 4.85

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 42 / 50

fluidanimate

Key optimization: For each pair of particles a and b, compute f(a, b)
once, then write f(a, b) to a and −f(a, b) to b.

a
b

f(a, b)

write

−f(a, b)

write

This optimization intuitively cuts the work
of computing all interactions f(a, b) in
half.

Performance Data:
Optimization T1 (s)
Without 6.41
With 4.85

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 42 / 50

fluidanimate

Issue: Updating a cell involves writing to that cell and all neighboring
cells.

Intuitively, all cells in the 3× 3 square
enclosing a target cell are written.
Updating a cell updates a tile of the
grid.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 43 / 50

fluidanimate

Issue: Updating a cell involves writing to that cell and all neighboring
cells.

Intuitively, all cells in the 3× 3 square
enclosing a target cell are written.
Updating a cell updates a tile of the
grid.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 43 / 50

fluidanimate

Issue: Updating a cell involves writing to that cell and all neighboring
cells.

Intuitively, all cells in the 3× 3 square
enclosing a target cell are written.
Updating a cell updates a tile of the
grid.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 43 / 50

Parallel fluidanimate

Question
How do we compute these interactions in parallel?

Let’s try coloring!

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 44 / 50

Parallel fluidanimate

Question
How do we compute these interactions in parallel?

Let’s try coloring!

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 44 / 50

Graph coloring for fluidanimate

Idea: Consider the conflict graph.

x

A grid cell conflicts with its neighbors and
any cell that writes to one of its
neighbors.

Cell (i, j) may write to any cell (i′, j′)
where |i− i′| ≤ 1 and |j − j′| ≤ 1.
Therefore cell (i, j) conflicts with all
cells (i′, j′) where |i− i′| ≤ 2 and
|j − j′| ≤ 2.
Conflict graph has degree 24, and
may be colored with 25 colors.

Can we do better?

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 45 / 50

Graph coloring for fluidanimate

Idea: Consider the conflict graph.

x

A grid cell conflicts with its neighbors and
any cell that writes to one of its
neighbors.

Cell (i, j) may write to any cell (i′, j′)
where |i− i′| ≤ 1 and |j − j′| ≤ 1.
Therefore cell (i, j) conflicts with all
cells (i′, j′) where |i− i′| ≤ 2 and
|j − j′| ≤ 2.
Conflict graph has degree 24, and
may be colored with 25 colors.

Can we do better?

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 45 / 50

Graph coloring for fluidanimate

Idea: Consider the conflict graph.

xxy

A grid cell conflicts with its neighbors and
any cell that writes to one of its
neighbors.

Cell (i, j) may write to any cell (i′, j′)
where |i− i′| ≤ 1 and |j − j′| ≤ 1.
Therefore cell (i, j) conflicts with all
cells (i′, j′) where |i− i′| ≤ 2 and
|j − j′| ≤ 2.
Conflict graph has degree 24, and
may be colored with 25 colors.

Can we do better?

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 45 / 50

Graph coloring for fluidanimate

Idea: Consider the conflict graph.

x

A grid cell conflicts with its neighbors and
any cell that writes to one of its
neighbors.

Cell (i, j) may write to any cell (i′, j′)
where |i− i′| ≤ 1 and |j − j′| ≤ 1.
Therefore cell (i, j) conflicts with all
cells (i′, j′) where |i− i′| ≤ 2 and
|j − j′| ≤ 2.
Conflict graph has degree 24, and
may be colored with 25 colors.

Can we do better?

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 45 / 50

Better graph coloring for fluidanimate

Question: How many colors do we need for fluidanimate?

Consider first coloring a tile, then tiling
the graph.

Tiling the graph ensures that no tiles
conflict.
Because tiles use a consistent
coloring, processing any color
processes a tiling of the grid, which
induces no conflicts.
We can color the grid with 9 colors!

Can we do better?

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 46 / 50

Better graph coloring for fluidanimate

Question: How many colors do we need for fluidanimate?

4

3

5

1

0

2

7

6

8

Consider first coloring a tile, then tiling
the graph.

Tiling the graph ensures that no tiles
conflict.
Because tiles use a consistent
coloring, processing any color
processes a tiling of the grid, which
induces no conflicts.
We can color the grid with 9 colors!

Can we do better?

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 46 / 50

Better graph coloring for fluidanimate

Question: How many colors do we need for fluidanimate?

4

3

5

1

0

2

7

6

8

7

6

8

4

3

5

1

0

2

7

6

8

4

3

5

7

6

8

4

3

5

1

0

2

7

6

8

4

3

5

1

0

2

7

6

8

4

3

5

7

6

4

3

1

0

7

6

4

3

1

0

7

6

4

3

Consider first coloring a tile, then tiling
the graph.

Tiling the graph ensures that no tiles
conflict.
Because tiles use a consistent
coloring, processing any color
processes a tiling of the grid, which
induces no conflicts.
We can color the grid with 9 colors!

Can we do better?

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 46 / 50

Better graph coloring for fluidanimate

Question: How many colors do we need for fluidanimate?

7

6

8

7

6

8

7

6

4

3

5

4

3

5

4

3

1

0

2

1

0

2

1

0

7

6

8

7

6

8

7

6

4

3

5

4

3

5

4

3

1

0

2

1

0

2

1

0

7

6

8

7

6

8

7

6

4

3

5

4

3

5

4

3

Consider first coloring a tile, then tiling
the graph.

Tiling the graph ensures that no tiles
conflict.
Because tiles use a consistent
coloring, processing any color
processes a tiling of the grid, which
induces no conflicts.
We can color the grid with 9 colors!

Can we do better?

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 46 / 50

Better graph coloring for fluidanimate

Question: How many colors do we need for fluidanimate?

7

6

8

7

6

8

7

6

4

3

5

4

3

5

4

3

1

0

2

1

0

2

1

0

7

6

8

7

6

8

7

6

4

3

5

4

3

5

4

3

1

0

2

1

0

2

1

0

7

6

8

7

6

8

7

6

4

3

5

4

3

5

4

3

Consider first coloring a tile, then tiling
the graph.

Tiling the graph ensures that no tiles
conflict.
Because tiles use a consistent
coloring, processing any color
processes a tiling of the grid, which
induces no conflicts.
We can color the grid with 9 colors!

Can we do better?

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 46 / 50

Better graph coloring for fluidanimate

Question: How many colors do we need for fluidanimate?

7

6

8

7

6

8

7

6

4

3

5

4

3

5

4

3

1

0

2

1

0

2

1

0

7

6

8

7

6

8

7

6

4

3

5

4

3

5

4

3

1

0

2

1

0

2

1

0

7

6

8

7

6

8

7

6

4

3

5

4

3

5

4

3

Consider first coloring a tile, then tiling
the graph.

Tiling the graph ensures that no tiles
conflict.
Because tiles use a consistent
coloring, processing any color
processes a tiling of the grid, which
induces no conflicts.
We can color the grid with 9 colors!

Can we do better?

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 46 / 50

Better graph coloring for fluidanimate

Question: How many colors do we need for fluidanimate?

7

6

8

7

6

8

7

6

4

3

5

4

3

5

4

3

1

0

2

1

0

2

1

0

7

6

8

7

6

8

7

6

4

3

5

4

3

5

4

3

1

0

2

1

0

2

1

0

7

6

8

7

6

8

7

6

4

3

5

4

3

5

4

3

Consider first coloring a tile, then tiling
the graph.

Tiling the graph ensures that no tiles
conflict.
Because tiles use a consistent
coloring, processing any color
processes a tiling of the grid, which
induces no conflicts.
We can color the grid with 9 colors!

Can we do better?

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 46 / 50

Better graph coloring for fluidanimate

Question: How many colors do we need for fluidanimate?

7

6

8

7

6

8

7

6

4

3

5

4

3

5

4

3

1

0

2

1

0

2

1

0

7

6

8

7

6

8

7

6

4

3

5

4

3

5

4

3

1

0

2

1

0

2

1

0

7

6

8

7

6

8

7

6

4

3

5

4

3

5

4

3

Consider first coloring a tile, then tiling
the graph.

Tiling the graph ensures that no tiles
conflict.
Because tiles use a consistent
coloring, processing any color
processes a tiling of the grid, which
induces no conflicts.
We can color the grid with 9 colors!

Can we do better?

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 46 / 50

Better graph coloring for fluidanimate

Question: How many colors do we need for fluidanimate?

7

6

8

7

6

8

7

6

4

3

5

4

3

5

4

3

1

0

2

1

0

2

1

0

7

6

8

7

6

8

7

6

4

3

5

4

3

5

4

3

1

0

2

1

0

2

1

0

7

6

8

7

6

8

7

6

4

3

5

4

3

5

4

3

Consider first coloring a tile, then tiling
the graph.

Tiling the graph ensures that no tiles
conflict.
Because tiles use a consistent
coloring, processing any color
processes a tiling of the grid, which
induces no conflicts.
We can color the grid with 9 colors!

Can we do better?

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 46 / 50

Better graph coloring for fluidanimate

Question: How many colors do we need for fluidanimate?

7

6

8

7

6

8

7

6

4

3

5

4

3

5

4

3

1

0

2

1

0

2

1

0

7

6

8

7

6

8

7

6

4

3

5

4

3

5

4

3

1

0

2

1

0

2

1

0

7

6

8

7

6

8

7

6

4

3

5

4

3

5

4

3

Consider first coloring a tile, then tiling
the graph.

Tiling the graph ensures that no tiles
conflict.
Because tiles use a consistent
coloring, processing any color
processes a tiling of the grid, which
induces no conflicts.
We can color the grid with 9 colors!

Can we do better?

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 46 / 50

Better graph coloring for fluidanimate

Question: How many colors do we need for fluidanimate?

7

6

8

7

6

8

7

6

4

3

5

4

3

5

4

3

1

0

2

1

0

2

1

0

7

6

8

7

6

8

7

6

4

3

5

4

3

5

4

3

1

0

2

1

0

2

1

0

7

6

8

7

6

8

7

6

4

3

5

4

3

5

4

3

Consider first coloring a tile, then tiling
the graph.

Tiling the graph ensures that no tiles
conflict.
Because tiles use a consistent
coloring, processing any color
processes a tiling of the grid, which
induces no conflicts.
We can color the grid with 9 colors!

Can we do better?

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 46 / 50

Better graph coloring for fluidanimate

Question: How many colors do we need for fluidanimate?

7

6

8

7

6

8

7

6

4

3

5

4

3

5

4

3

1

0

2

1

0

2

1

0

7

6

8

7

6

8

7

6

4

3

5

4

3

5

4

3

1

0

2

1

0

2

1

0

7

6

8

7

6

8

7

6

4

3

5

4

3

5

4

3

Consider first coloring a tile, then tiling
the graph.

Tiling the graph ensures that no tiles
conflict.
Because tiles use a consistent
coloring, processing any color
processes a tiling of the grid, which
induces no conflicts.
We can color the grid with 9 colors!

Can we do better?

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 46 / 50

Better graph coloring for fluidanimate

Question: How many colors do we need for fluidanimate?

7

6

8

7

6

8

7

6

4

3

5

4

3

5

4

3

1

0

2

1

0

2

1

0

7

6

8

7

6

8

7

6

4

3

5

4

3

5

4

3

1

0

2

1

0

2

1

0

7

6

8

7

6

8

7

6

4

3

5

4

3

5

4

3

Consider first coloring a tile, then tiling
the graph.

Tiling the graph ensures that no tiles
conflict.
Because tiles use a consistent
coloring, processing any color
processes a tiling of the grid, which
induces no conflicts.
We can color the grid with 9 colors!

Can we do better?

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 46 / 50

Better graph coloring for fluidanimate

Question: How many colors do we need for fluidanimate?

7

6

8

7

6

8

7

6

4

3

5

4

3

5

4

3

1

0

2

1

0

2

1

0

7

6

8

7

6

8

7

6

4

3

5

4

3

5

4

3

1

0

2

1

0

2

1

0

7

6

8

7

6

8

7

6

4

3

5

4

3

5

4

3

Consider first coloring a tile, then tiling
the graph.

Tiling the graph ensures that no tiles
conflict.
Because tiles use a consistent
coloring, processing any color
processes a tiling of the grid, which
induces no conflicts.
We can color the grid with 9 colors!

Can we do better?

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 46 / 50

Even better graph coloring for fluidanimate

Question: Can we color fluidanimate with fewer than 9 colors?

0

8

16

24

32

40

48

56

1

9

17

25

33

41

49

57

2

10

18

26

34

42

50

58

3

11

19

27

35

43

51

59

4

12

20

28

36

44

52

60

5

13

21

29

37

45

53

61

6

14

22

30

38

46

54

62

7

15

23

31

39

47

55

63

Suppose each cell only updates itself
and cells lexicographically smaller
than itself.

Each cell updates a set of 5 cells in
a new tile.
Coloring this tile and using it to tile
the grid induces a 5-coloring.
Each color dictates a shifted tiling of
the grid, so all nodes of the same
color may be processed in parallel.
We can color the grid with 5 colors!

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 47 / 50

Even better graph coloring for fluidanimate

Question: Can we color fluidanimate with fewer than 9 colors?

0

8

16

24

32

40

48

56

1

9

17

25

33

41

49

57

2

10

18

26

34

42

50

58

3

11

19

27

35

43

51

59

4

12

20

28

36

44

52

60

5

13

21

29

37

45

53

61

6

14

22

30

38

46

54

62

7

15

23

31

39

47

55

63

Suppose each cell only updates itself
and cells lexicographically smaller
than itself.

Each cell updates a set of 5 cells in
a new tile.
Coloring this tile and using it to tile
the grid induces a 5-coloring.
Each color dictates a shifted tiling of
the grid, so all nodes of the same
color may be processed in parallel.
We can color the grid with 5 colors!

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 47 / 50

Even better graph coloring for fluidanimate

Question: Can we color fluidanimate with fewer than 9 colors?

0

8

16

24

32

40

48

56

1

9

17

25

33

41

49

57

2

10

18

26

34

42

50

58

3

11

19

27

35

43

51

59

4

12

20

28

36

44

52

60

5

13

21

29

37

45

53

61

6

14

22

30

38

46

54

62

7

15

23

31

39

47

55

63

Suppose each cell only updates itself
and cells lexicographically smaller
than itself.

Each cell updates a set of 5 cells in
a new tile.
Coloring this tile and using it to tile
the grid induces a 5-coloring.
Each color dictates a shifted tiling of
the grid, so all nodes of the same
color may be processed in parallel.
We can color the grid with 5 colors!

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 47 / 50

Even better graph coloring for fluidanimate

Question: Can we color fluidanimate with fewer than 9 colors?
Suppose each cell only updates itself
and cells lexicographically smaller
than itself.

Each cell updates a set of 5 cells in
a new tile.
Coloring this tile and using it to tile
the grid induces a 5-coloring.
Each color dictates a shifted tiling of
the grid, so all nodes of the same
color may be processed in parallel.
We can color the grid with 5 colors!

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 47 / 50

Even better graph coloring for fluidanimate

Question: Can we color fluidanimate with fewer than 9 colors?

01

2 3 4

Suppose each cell only updates itself
and cells lexicographically smaller
than itself.

Each cell updates a set of 5 cells in
a new tile.
Coloring this tile and using it to tile
the grid induces a 5-coloring.
Each color dictates a shifted tiling of
the grid, so all nodes of the same
color may be processed in parallel.
We can color the grid with 5 colors!

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 47 / 50

Even better graph coloring for fluidanimate

Question: Can we color fluidanimate with fewer than 9 colors?

01

2 3 4

01

2 3

01

2 3 401

2 3 4

4 01

01

2 3 4

01

2 3 4

1

2

01

0

3 4

01

2 3 4

01

2 3 4

01

2 3 4

22 3 401

2 3 4

4

Suppose each cell only updates itself
and cells lexicographically smaller
than itself.

Each cell updates a set of 5 cells in
a new tile.
Coloring this tile and using it to tile
the grid induces a 5-coloring.
Each color dictates a shifted tiling of
the grid, so all nodes of the same
color may be processed in parallel.
We can color the grid with 5 colors!

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 47 / 50

Even better graph coloring for fluidanimate

Question: Can we color fluidanimate with fewer than 9 colors?

4

2

1

3

0

4

2

1

1

3

0

4

2

1

3

0

0

4

2

1

3

0

4

2

2

1

3

0

4

2

1

3

3

0

4

2

1

3

0

4

4

2

1

3

0

4

2

1

1

3

0

4

2

1

3

0

0

4

2

1

3

0

4

2

Suppose each cell only updates itself
and cells lexicographically smaller
than itself.

Each cell updates a set of 5 cells in
a new tile.
Coloring this tile and using it to tile
the grid induces a 5-coloring.
Each color dictates a shifted tiling of
the grid, so all nodes of the same
color may be processed in parallel.
We can color the grid with 5 colors!

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 47 / 50

Even better graph coloring for fluidanimate

Question: Can we color fluidanimate with fewer than 9 colors?

4

2

1

3

0

4

2

1

1

3

0

4

2

1

3

0

0

4

2

1

3

0

4

2

2

1

3

0

4

2

1

3

3

0

4

2

1

3

0

4

4

2

1

3

0

4

2

1

1

3

0

4

2

1

3

0

0

4

2

1

3

0

4

2

Suppose each cell only updates itself
and cells lexicographically smaller
than itself.

Each cell updates a set of 5 cells in
a new tile.
Coloring this tile and using it to tile
the grid induces a 5-coloring.
Each color dictates a shifted tiling of
the grid, so all nodes of the same
color may be processed in parallel.
We can color the grid with 5 colors!

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 47 / 50

Even better graph coloring for fluidanimate

Question: Can we color fluidanimate with fewer than 9 colors?

4

2

1

3

0

4

2

1

1

3

0

4

2

1

3

0

0

4

2

1

3

0

4

2

2

1

3

0

4

2

1

3

3

0

4

2

1

3

0

4

4

2

1

3

0

4

2

1

1

3

0

4

2

1

3

0

0

4

2

1

3

0

4

2

Suppose each cell only updates itself
and cells lexicographically smaller
than itself.

Each cell updates a set of 5 cells in
a new tile.
Coloring this tile and using it to tile
the grid induces a 5-coloring.
Each color dictates a shifted tiling of
the grid, so all nodes of the same
color may be processed in parallel.
We can color the grid with 5 colors!

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 47 / 50

Even better graph coloring for fluidanimate

Question: Can we color fluidanimate with fewer than 9 colors?

4

2

1

3

0

4

2

1

1

3

0

4

2

1

3

0

0

4

2

1

3

0

4

2

2

1

3

0

4

2

1

3

3

0

4

2

1

3

0

4

4

2

1

3

0

4

2

1

1

3

0

4

2

1

3

0

0

4

2

1

3

0

4

2

Suppose each cell only updates itself
and cells lexicographically smaller
than itself.

Each cell updates a set of 5 cells in
a new tile.
Coloring this tile and using it to tile
the grid induces a 5-coloring.
Each color dictates a shifted tiling of
the grid, so all nodes of the same
color may be processed in parallel.
We can color the grid with 5 colors!

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 47 / 50

Even better graph coloring for fluidanimate

Question: Can we color fluidanimate with fewer than 9 colors?

4

2

1

3

0

4

2

1

1

3

0

4

2

1

3

0

0

4

2

1

3

0

4

2

2

1

3

0

4

2

1

3

3

0

4

2

1

3

0

4

4

2

1

3

0

4

2

1

1

3

0

4

2

1

3

0

0

4

2

1

3

0

4

2

Suppose each cell only updates itself
and cells lexicographically smaller
than itself.

Each cell updates a set of 5 cells in
a new tile.
Coloring this tile and using it to tile
the grid induces a 5-coloring.
Each color dictates a shifted tiling of
the grid, so all nodes of the same
color may be processed in parallel.
We can color the grid with 5 colors!

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 47 / 50

Even better graph coloring for fluidanimate

Question: Can we color fluidanimate with fewer than 9 colors?

4

2

1

3

0

4

2

1

1

3

0

4

2

1

3

0

0

4

2

1

3

0

4

2

2

1

3

0

4

2

1

3

3

0

4

2

1

3

0

4

4

2

1

3

0

4

2

1

1

3

0

4

2

1

3

0

0

4

2

1

3

0

4

2

Suppose each cell only updates itself
and cells lexicographically smaller
than itself.

Each cell updates a set of 5 cells in
a new tile.
Coloring this tile and using it to tile
the grid induces a 5-coloring.
Each color dictates a shifted tiling of
the grid, so all nodes of the same
color may be processed in parallel.
We can color the grid with 5 colors!

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 47 / 50

Performance of fluidanimate

Theoretical Performance for 2-D fluidanimate
Work:

W (n) = Θ(n2)

Span:

S(n) = 〈number of colors〉 · (O(lg n) + Θ(1)) = O(lg n)

Actual performance for 3-D fluidanimate on 300, 000 particles in
135, 000 cells.

Version T1 (s) T8 (s) Parallelism
Cilk, 14-coloring 4.28 0.60 1894
Pthreads 5.32 0.81
Cilk, “stencil” 6.45 0.82 23791

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 48 / 50

Performance of fluidanimate

Theoretical Performance for 2-D fluidanimate
Work: W (n) = Θ(n2)
Span:

S(n) = 〈number of colors〉 · (O(lg n) + Θ(1)) = O(lg n)

Actual performance for 3-D fluidanimate on 300, 000 particles in
135, 000 cells.

Version T1 (s) T8 (s) Parallelism
Cilk, 14-coloring 4.28 0.60 1894
Pthreads 5.32 0.81
Cilk, “stencil” 6.45 0.82 23791

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 48 / 50

Performance of fluidanimate

Theoretical Performance for 2-D fluidanimate
Work: W (n) = Θ(n2)
Span: S(n) = 〈number of colors〉 · (O(lg n) + Θ(1)) = O(lg n)

Actual performance for 3-D fluidanimate on 300, 000 particles in
135, 000 cells.

Version T1 (s) T8 (s) Parallelism
Cilk, 14-coloring 4.28 0.60 1894
Pthreads 5.32 0.81
Cilk, “stencil” 6.45 0.82 23791

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 48 / 50

Performance of fluidanimate

Theoretical Performance for 2-D fluidanimate
Work: W (n) = Θ(n2)
Span: S(n) = 〈number of colors〉 · (O(lg n) + Θ(1)) = O(lg n)

Actual performance for 3-D fluidanimate on 300, 000 particles in
135, 000 cells.

Version T1 (s) T8 (s) Parallelism
Cilk, 14-coloring 4.28 0.60 1894
Pthreads 5.32 0.81
Cilk, “stencil” 6.45 0.82 23791

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 48 / 50

Conclusion

Chromatic scheduling allows for parallel updates on graphs that
produce deterministic results that are consistent with a serial
execution.
Computing a chromatic schedule can be relatively cheap.
Chromatic schedules can be very efficient.
Chromatic scheduling can coordinate updating all nodes in the
graph in parallel.
Using bags, chromatic scheduling can support updating nodes in
a graph sparsely.

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 49 / 50

Questions?

0.14 0.14

0.14

0.14

0.14

0.14

0.14

0 1

0

1

1

2

3 0

2

4

2

1

3

0

4

2

1

1

3

0

4

2

1

3

0

0

4

2

1

3

0

4

2

2

1

3

0

4

2

1

3

3

0

4

2

1

3

0

4

4

2

1

3

0

4

2

1

1

3

0

4

2

1

3

0

0

4

2

1

3

0

4

2

Schardl (MIT CSAIL) Chromatic Scheduling October 23, 2012 50 / 50

	Chromatic Scheduling
	Parallel PageRank
	The Bag Data Structure
	Simulating fluid flows

