
TB Schardl 6.046J/18.410J
November 6, 2009 Recitation 8

Reductions

Recall from yesterday’s lecture:

REDUCTIONS ARE USEFUL

Intuitively, suppose you have some problemA that you don’t know how to solve. If you can
find a way to reduce problemA to some problemB that you do know how to solve, then that’s just
as good as finding a way to solveA in the first place. You’ve seen an example of this sort of thing
already, when we reduced maximum bipartite matching to maximum flow.

Formally, suppose we have an instance of problemA that we want to solve. Suppose further
that we know how to transform instances of problemA into instances of problemB in polynomial
time, and we have a machine to solve instances of problemB in polynomial time. We can solve an
instance ofA in polynomial time by transforming it to an instance ofB, which takes polynomial
time, solving that instance ofB, which also takes polynomial time, and extracting the answer to
A from the answer toB in polynomial time. This is a slight generalization from thedescription of
reductions described yesterday. This last step is typically obvious from the original transformation,
but sometimes it requires some care.

Implications of Reductions

Reductions also tell us about the relative difficulty of problems. If we have a way of quickly
reducing instances ofA into instances ofB, then solvingB is theoretically at least as difficult as
solving A. After all, if you can solveB, then you can solveA by using your reduction and the
B solver. I believe this is why we notate the fact thatA reduces toB with the notationA < B

or A ≤ B or A ≤P B. This notion is important in complexity theory. If we know that A is
NP-complete, and we have a polynomial-time reduction fromA to B, then we can conclude that
B is also NP-complete. You’ll see more of this in lecture next week.

Some Reductions

Let’s look at some reductions between problems. Recall the following decision problems.

SAT: Given some boolean formula in CNF, does it have a satisfying assignment?

3-SAT: Given some boolean formula in CNF in which each clause contains 3 literals, does it have
a satisfying assignment?

SAT appears to be a generalization of 3-SAT and is intuitively more difficult. However, it turns
out we can reduce SAT to 3-SAT, so 3-SAT is just as hard as SAT.



2 Recitation 8

Problem: Reduce SAT to 3-SAT.
Solution: We first create a parse tree of the given boolean formula. Forexample, suppose we are
givenφ = (x1 ∧x2)∨¬((¬x1 ∨x3)∧x4 ∧¬x5)∧¬x2. The parse tree for thisφ looks like the tree
in figure 1. After obtaining this parse tree we associate a newvariable with each internal node, as
shown in the same figure. Using these new variables we can write a new boolean formula

φ′ = y1 ∧ (y1 ⇐⇒ (y2 ∧ ¬x2))

∧ (y2 ⇐⇒ (y3 ∨ y4))

∧ (y3 ⇐⇒ (x1 ∧ x2))

∧ (y4 ⇐⇒ ¬y5)

∧ (y5 ⇐⇒ (y6 ∧ ¬x5))

∧ (y6 ⇐⇒ (y7 ∧ x4))

∧ (y7 ⇐⇒ (¬x1 ∨ x3))

We now have a bunch of clauses that each have at most 3 literals. We need to convert these
clauses into CNF. To do this, for each clause we will write a truth table to see when the clause is
true. For instance, if clauseC1 = (y1 ⇐⇒ (y2 ∧ ¬x2)), then the truth table forC1 is:

y1 y2 ¬x2 C1

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

With this truth table we will examine each row where the valueof C1 is false, or where¬C1 is
true. In this example we see that

¬C1 =(¬y1 ∧ y2 ∧ ¬x2)∨

(y1 ∧ ¬y2 ∧ x2)∨

(y1 ∧ ¬y2 ∧ ¬x2)∨

(y1 ∧ y2 ∧ x2)

We can apply DeMorgan’s laws to this formula to obtain a version of this clause in CNF:

C1 = ¬(¬C1) =(y1 ∨ ¬y2 ∨ x2)∧

(¬y1 ∨ y2 ∨ ¬x2)∧

(¬y1 ∨ y2 ∨ x2)∧

(¬y1 ∨ ¬y2 ∨ ¬x2)



Recitation 8 3

-x2

-x5

x1 x2

ᴧ

ᴧ

ᴧ

ᴧ

v

-

y1

y2

y3
y4

y5

y6

x4

-x1 x3

vy7

Figure 1: Parse tree for boolean expressionφ = (x1 ∧ x2) ∨ ¬((¬x1 ∨ x3) ∧ x4 ∧ ¬x5) ∧ ¬x2.
Each internal node has been associated with a new variable inorder to define a newφ′ boolean
expression with clauses containing at most three literals.



4 Recitation 8

x -x

Figure 2: Variable gadget for 3-SAT to k-Vertex Cover reduction. The variablex in aφ for 3-SAT
is replaced by two nodes in a graph. One node represents the literalx, while the other represents
the literal¬x.

To finish this reduction we have to deal with the clauses that have fewer than 3 literals in them.
We can use a simple padding technique on these clauses. Suppose for instance that we have some
clause(x ∨ y). This clause is equivalent to(x ∨ y ∨ p) ∧ (x ∨ y ∨ ¬p) because, no matter what
value ofp we choose, one ofx or y must be true for these clauses to be true, which is exactly the
condition that satisfies the original clause. We can therefore pad clauses with 2 variables by adding
an additional variable and replicating the clause appropriately. A similar technique can be used to
handle clauses with a single variable.

The correctness of this reduction can be observed from the correctness of each step. We have
to verify that this reduction creates a boolean formula for 3-SAT that is polynomial in size, and that
this process takes polynomial time. Notice that parsing theoriginal boolean formula into the tree
takes polynomial time and generates at most a binary tree. A binary tree withn leaves contains
2n nodes in total, so by transforming each internal node of thistree into a new clause we create a
only a polynomial number of clauses. Transforming each clause into CNF requires examining at
most 8 entries in a truth table since each of these clauses contains at most 3 literals. Therefore the
transformation to CNF multiplies the number of clauses by at most 8. Finally the padding step at
most doubles or quadruples the number of clauses to handle clauses that were too small. Each step
takes polynomial time and multiplies the number of clauses in the formula by at most a polynomial
amount, and therefore the result is polynomial in size as desired.

With this reduction we have proven that 3-SAT is at least as hard as SAT. This is useful for
showing that other problems are at least as hard as SAT. Recallthe following decision problem.

Vertex Cover: Given an arbitrary graph, can we find a subset ofk nodes in the graph such that
every edge touches one of the nodes in this subset?

Problem: Reduce 3-SAT to Vertex Cover.
Solution: Suppose our boolean formula for 3-SAT,φ, containsm variables andl clauses. For
our vertex cover we will usek = m + 2l. We will use the following two gadgets to perform
our reduction. For each variable inφ we will use the variable gadget described in figure 2. For
each clause inφ we will use the clause gadget described in figure 3. Connect theliterals in the
variable gadgets to the matching literals in the clause gadgets with an edge. For example, if we
haveφ = (x1 ∨x2 ∨¬x3)∧ (¬x1 ∨¬x2 ∨x3)∧ (x1 ∨¬x2∨ ≥ x3) then we are looking for a vertex
cover of sizek = 3 + 2(3) = 9 on the graph in figure 4. At this point the reduction is complete.

We can see that this reduction requires polynomial time and polynomial space. This reduction
requires one gadget of 3 vertices and 3 edges for each clause inφ, and one gadget of 2 vertices and 1



Recitation 8 5

y z

x

Figure 3: Clause gadget for 3-SAT to k-Vertex Cover reduction. The 3-SAT clause is represented
as a clique of 3 nodes, where each node represents a literal inthe clause. The clause represented
here is(x ∨ y ∨ z).

edge for each variable inφ. Each literal in each clause gadget is connected with a single additional
edge to a literal in a variable gadget, so we add 3 edges for each clause gadget to connect the clause
and variable gadgets. Therefore this reduction has polynomial size and requires polynomial time
to compute.

We now have to prove that this reduction is correct, meaning that a vertex cover of sizek =
m + 2l exists if and only if the givenφ is satisfiable. Suppose we have a satisfying assignment for
φ. For each variable, add the node corresponding to the true version of the literal for that variable
to the vertex cover. Then, for each clause, select one true literal in the clause and add the remaining
two literals to the vertex cover. We have used 2 vertices in each clause gadget and 1 vertex in each
variable gadget for this cover, which meets the size requirement for the cover. Each edge in a
variable gadget is covered by the node selected from that gadget. All three edges in each clause
are covered by the two nodes we selected in that clause gadget. One true literal in each clause
gadget is left out of the cover, but because it is a true literal it is connected by an edge to the node
corresponding to the true literal in a variable clause. Therefore these nodes cover all of the edges
in the graph, and we have a valid vertex cover.

We must still prove the other direction of this implication.If we have a vertex cover of size
k for this graph, that cover must contain one node in each variable gadget and two nodes in each
clause gadget to cover the edges in those gadgets. This requires exactlyk = m+2l nodes. Suppose
we take literal corresponding to a covered node in a variablegadget to be true. This assignment
satisfiesφ because, for each clause gadget, each of the three edges connecting the clause gadget to
the variable gadgets is covered, and only two nodes in the clause gadget are in the cover. Therefore
one of these clause-gadget edges must be covered by a node in avariable gadget, and so the
assignment of that covered variable gadget literal to true in φ will satisfy the clause. This holds for
every clause gadget and clause, so this assignment satisfiesφ. Therefore ak-covering of this graph
corresponds to a satisfying assignment forφ, while a satisfying assignment forφ corresponds to a
k-covering of this graph, and this reduction is correct.

We also know that reductions are transitive. If we can quickly reduceA to B, and we can
quickly reduceB to C, then we have an obvious way to quickly reduceA to C. The implication
on problem difficulty is also transitive. IfA ≤ B andB ≤ C, thenA ≤ C.



6 Recitation 8

x1

x1 -x1 x1

x2x1

-x3

-x1

-x2x2

-x2

-x2 -x3x3

-x3x3

Figure 4: Example graph from 3-SAT to k-Vertex Cover reduction. The boolean formula for this
example isφ = (x1 ∨ x2 ∨¬x3)∧ (¬x1 ∨¬x2 ∨ x3)∧ (x1 ∨¬x2∨ ≥ x3). The variable and clause
gadgets for this boolean formula are visible in this graph, as well as the edges connecting nodes
from the literals in the variable gadgets to matching literals in the clause gadgets.

Another Kind of Reduction

We can develop a more general kind of reduction than what we’ve described before. Let’s suppose
you’re stuck on a problem on a problem set. Since you need to finish the problem set soon, you
decide to go to office hours to get some advice on solving the problem. However, you know that
the TA is very strict and will not tell you the solution directly. Instead he will only answer very
carefully crafted yes-no questions.

What you could do is first craft some yes-no question from your problem, ask the TA, and get
some answer. Based on that answer you can craft another question for the TA, ask the TA, and
get another answer. Then, based on that second question and answer, along with all your previous
knowledge about the problem, you craft a third question for the TA, ask the TA, and get another
answer. You can continue this process for a whole bunch of iterations until you get the answer to
your problem, and if you can ensure that your sequence of questions is short enough, then you can
finish the problem set on time. This is basically the framework for another kind of reduction.

We can formalize this kind of reduction further. Suppose we have some algorithm for solving
instances of problemB in polynomial time. If we can reduce an instance of problemA to solving a
polynomial number of instances ofB, then we can also solveA in polynomial time. Furthermore,
the instances ofB that we use may depend on the results of previous reductions.This kind of
reduction is called the “adaptive Cook reduction.”

For instance, we may solve an instance ofA, x, using an algorithm that solves instances ofB,
TB, and a reducerR that takes an instance ofA and an arbitrary number of previous reductions
from A to B with their results as follows.



Recitation 8 7

1. x → R(x) = x1. RunTB(x1) = y1.

2. x → R(x, x1, y1) = x2. RunTB(x2) = y2.

3. x → R(x, x1, y1, x2, y2) = x3. RunTB(x3) = y3.

4. Repeat at most a polynomial number of times.

5. Return the answer tox.

This kind of reduction is very useful for reducing search problems to decision problems. For
example, if we have an algorithmTSAT? that tells us if some boolean formula has a satisfying
assignment, we can determine what that satisfying assignment is using this kind of reduction.
(How?)

Let’s examine one last problem that demonstrates this kind of reduction.

Problem: Suppose I have an algorithmTk−V C? that, given a graphG = (V,E) and a parameterk,
returns whether or not the graph has ak vertex cover. How can find ak-node vertex cover of the
graphG?
Solution: First askTk−V C? if there is ak vertex cover forG. If it says no, then nok vertex cover
exists forG, so give up. Otherwise, pick some vertexx ∈ V , and removex and all edges incident
tox fromG. AskTk−V C? if this new graph,G−x, has ak−1 vertex cover. If so, then we know that
x can be in ak vertex cover of the original graphG, so we addx to our vertex cover and recurse
this whole process onG − x andk − 1. If Tk−V C?(G − x, k − 1) returns “no,” then we know that
x cannot be in ak vertex cover ofG. By definition of vertex cover, we therefore know that some
neighbor ofx must be in thek-vertex cover ofG. Consequently we can removey ∈ N(x), one of
x’s neighbors fromG, includey in our vertex cover, and recurse this process onG − y andk − 1.

After k iterations we will have foundk vertices that coverG, so assuming thatTk−V C? runs
in polynomial time, then this entire process runs in polynomial time. Thus we have reduced the
problem of finding ak vertex cover of a graph to the problem of deciding if ak vertex cover exists
for that graph.


