TB Schardl 6.046J/18.410J
November 6, 2009 Recitation 8

Reductions
Recall from yesterday’s lecture:

REDUCTIONS ARE USEFUL

Intuitively, suppose you have some problehthat you don’t know how to solve. If you can
find a way to reduce problem to some problen® that you do know how to solve, then that’s just
as good as finding a way to solvkin the first place. You've seen an example of this sort of thing
already, when we reduced maximum bipartite matching to mam flow.

Formally, suppose we have an instance of problethat we want to solve. Suppose further
that we know how to transform instances of probldrmto instances of problem® in polynomial
time, and we have a machine to solve instances of proldtempolynomial time. We can solve an
instance ofA in polynomial time by transforming it to an instance Bf which takes polynomial
time, solving that instance aB, which also takes polynomial time, and extracting the angwe
A from the answer t@d in polynomial time. This is a slight generalization from thescription of
reductions described yesterday. This last step is tygicéious from the original transformation,
but sometimes it requires some care.

Implications of Reductions

Reductions also tell us about the relative difficulty of peshk. If we have a way of quickly
reducing instances ol into instances of3, then solvingB is theoretically at least as difficult as
solving A. After all, if you can solveB, then you can solvel by using your reduction and the
B solver. | believe this is why we notate the fact tlateduces taB with the notationA < B
or A < BorA <p B. This notion is important in complexity theory. If we knowathA is
NP-complete, and we have a polynomial-time reduction frbto B, then we can conclude that
B is also NP-complete. You'll see more of this in lecture negew:

Some Reductions
Let’s look at some reductions between problems. Recall th@xfimg decision problems.
SAT: Given some boolean formula in CNF, does it have a satisfyssggament?

3-SAT: Given some boolean formula in CNF in which each clause costaliterals, does it have
a satisfying assignment?

SAT appears to be a generalization of 3-SAT and is intuiivebre difficult. However, it turns
out we can reduce SAT to 3-SAT, so 3-SAT is just as hard as SAT.

2 Recitation 8

Problem: Reduce SAT to 3-SAT.

Solution: We first create a parse tree of the given boolean formulaekample, suppose we are
giveno = (x1 Axe) V —((—z1 Vas) Axy A —xs) A —zo. The parse tree for thislooks like the tree
in figure 1. After obtaining this parse tree we associate avavable with each internal node, as
shown in the same figure. Using these new variables we cae ariew boolean formula

¢ =N = (Y2 A—x2))
AN(y2 <= (y3Vys))
Ays <= (z1Aa2))
A(ys = —ys)
Ays <= (Yo N ~25))
ANys <= (yr A\ 1a))
ANyr <= (-z1Va3))

We now have a bunch of clauses that each have at most 3 litdéfidsneed to convert these
clauses into CNF. To do this, for each clause we will write ¢htitable to see when the clause is
true. For instance, if clausé, = (y; <= (y2 A —x2)), then the truth table fof’; is:

y1 Yo —wp | C)
0 O 0 1
0O O 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

With this truth table we will examine each row where the vadti€’; is false, or where-C is
true. In this example we see that

—Cy =(—y1 A ya A 1)V
(Y1 A =ya A 2)V
(Y1 A =2 A —a2)V
(y1 AN ya A a)

We can apply DeMorgan’s laws to this formula to obtain a \ersif this clause in CNF:

C1 = =(=Cy) =(y1 V 7y2 V x2) A

(—y1 V2 V —xg) A
(=y1 VY2 V 22)A
(=91 V my2 V xs)

Recitation 8 3

Figure 1. Parse tree for boolean expression= (x; A x2) V =((—xz1 V 23) A 24 A —25) A —2a.
Each internal node has been associated with a new varialoleler to define a new’ boolean
expression with clauses containing at most three literals.

O—

Figure 2: Variable gadget for 3-SAT to k-Vertex Cover reduction. Tlae&blex in a¢ for 3-SAT
is replaced by two nodes in a graph. One node representseahed 1i, while the other represents
the literal—z.

To finish this reduction we have to deal with the clauses tha¢liewer than 3 literals in them.
We can use a simple padding technique on these clauses. stujgnanstance that we have some
clause(z V y). This clause is equivalent ta VvV y V p) A (z V y V —p) because, no matter what
value ofp we choose, one af or y must be true for these clauses to be true, which is exactly the
condition that satisfies the original clause. We can theegiad clauses with 2 variables by adding
an additional variable and replicating the clause appabdgly. A similar technique can be used to
handle clauses with a single variable.

The correctness of this reduction can be observed from tireataess of each step. We have
to verify that this reduction creates a boolean formula &4 that is polynomial in size, and that
this process takes polynomial time. Notice that parsingotiginal boolean formula into the tree
takes polynomial time and generates at most a binary treeindnptree withn leaves contains
2n nodes in total, so by transforming each internal node ofttkrs into a new clause we create a
only a polynomial number of clauses. Transforming eachsdanto CNF requires examining at
most 8 entries in a truth table since each of these clauséainsmat most 3 literals. Therefore the
transformation to CNF multiplies the number of clauses by a$t8. Finally the padding step at
most doubles or quadruples the number of clauses to haralsed that were too small. Each step
takes polynomial time and multiplies the number of clausdgké formula by at most a polynomial
amount, and therefore the result is polynomial in size asebks

With this reduction we have proven that 3-SAT is at least ad ba SAT. This is useful for
showing that other problems are at least as hard as SAT. Rieeddllowing decision problem.

Vertex Cover: Given an arbitrary graph, can we find a subsek afodes in the graph such that
every edge touches one of the nodes in this subset?

Problem: Reduce 3-SAT to Vertex Cover.
Solution: Suppose our boolean formula for 3-SAT, containsm variables and clauses. For
our vertex cover we will usé& = m + 2[. We will use the following two gadgets to perform
our reduction. For each variable inwe will use the variable gadget described in figure 2. For
each clause i we will use the clause gadget described in figure 3. Connediténals in the
variable gadgets to the matching literals in the clause giadgith an edge. For example, if we
haveg = (z1 VoV —x3) A (—xy V —xe Vas) A (x V-V > x3) then we are looking for a vertex
cover of sizek = 3 + 2(3) = 9 on the graph in figure 4. At this point the reduction is complet

We can see that this reduction requires polynomial time atghpmial space. This reduction
requires one gadget of 3 vertices and 3 edges for each clasisand one gadget of 2 vertices and 1

Re

Figure 3: Clause gadget for 3-SAT to k-Vertex Cover reduction. The 3-8lause is represented
as a cligue of 3 nodes, where each node represents a litdred tlause. The clause represented
hereis(x Vy V z).

edge for each variable i Each literal in each clause gadget is connected with aesadgitional
edge to a literal in a variable gadget, so we add 3 edges foraawse gadget to connect the clause
and variable gadgets. Therefore this reduction has poljaimize and requires polynomial time
to compute.

We now have to prove that this reduction is correct, meartiag) & vertex cover of size =
m + 2[exists if and only if the givew is satisfiable. Suppose we have a satisfying assignment for
¢. For each variable, add the node corresponding to the tmsgoweof the literal for that variable
to the vertex cover. Then, for each clause, select one tarallin the clause and add the remaining
two literals to the vertex cover. We have used 2 vertices @ etause gadget and 1 vertex in each
variable gadget for this cover, which meets the size reqerd for the cover. Each edge in a
variable gadget is covered by the node selected from thagegad\ll three edges in each clause
are covered by the two nodes we selected in that clause ga@uet true literal in each clause
gadget is left out of the cover, but because it is a true liiera connected by an edge to the node
corresponding to the true literal in a variable clause. &fwe these nodes cover all of the edges
in the graph, and we have a valid vertex cover.

We must still prove the other direction of this implicatioli.we have a vertex cover of size
k for this graph, that cover must contain one node in each bl@rgadget and two nodes in each
clause gadget to cover the edges in those gadgets. Thisesguactlyc = m+2[nodes. Suppose
we take literal corresponding to a covered node in a varigatiget to be true. This assignment
satisfiesp because, for each clause gadget, each of the three edgextingrihe clause gadget to
the variable gadgets is covered, and only two nodes in thuselgadget are in the cover. Therefore
one of these clause-gadget edges must be covered by a nodeaimable gadget, and so the
assignment of that covered variable gadget literal to muewill satisfy the clause. This holds for
every clause gadget and clause, so this assignment safisfiberefore a-covering of this graph
corresponds to a satisfying assignmentdpwhile a satisfying assignment fgrcorresponds to a
k-covering of this graph, and this reduction is correct.

We also know that reductions are transitive. If we can quickduceA to B, and we can

quickly reduceB to C, then we have an obvious way to quickly redut¢o C. The implication
on problem difficulty is also transitive. i < B andB < C, thenA < C.

Figure 4: Example graph from 3-SAT to k-Vertex Cover reduction. Thelban formula for this
example isp = (1 V2o V —a3) A (- V —xe Vag) A (1 V —xV > 23). The variable and clause
gadgets for this boolean formula are visible in this graghwall as the edges connecting nodes
from the literals in the variable gadgets to matching liemathe clause gadgets.

Another Kind of Reduction

We can develop a more general kind of reduction than whateng@scribed before. Let’'s suppose
you're stuck on a problem on a problem set. Since you needighfthe problem set soon, you
decide to go to office hours to get some advice on solving thblem. However, you know that
the TA is very strict and will not tell you the solution diréct Instead he will only answer very
carefully crafted yes-no questions.

What you could do is first craft some yes-no question from yeablem, ask the TA, and get
some answer. Based on that answer you can craft anotheraquéstithe TA, ask the TA, and
get another answer. Then, based on that second questiomsndraalong with all your previous
knowledge about the problem, you craft a third questiontierTA, ask the TA, and get another
answer. You can continue this process for a whole bunch titas until you get the answer to
your problem, and if you can ensure that your sequence otigusss short enough, then you can
finish the problem set on time. This is basically the framdwfor another kind of reduction.

We can formalize this kind of reduction further. Suppose aeehsome algorithm for solving
instances of problem® in polynomial time. If we can reduce an instance of probléto solving a
polynomial number of instances &f, then we can also solvé in polynomial time. Furthermore,
the instances of3 that we use may depend on the results of previous reductidohss kind of
reduction is called the “adaptive Cook reduction.”

For instance, we may solve an instancedofr, using an algorithm that solves instanced3of
Ts, and a reduceR that takes an instance &f and an arbitrary number of previous reductions
from A to B with their results as follows.

Recitation 8 7

Tr — R(:L') — .’,Cl. RUHTB(:El) e yl-
r— R<x7$17y1) = T9. RunTB<I‘2) = y2_
Tr— R($>$1,y1,9€2>yz) = I3. RunTB($3) = 3.

Repeat at most a polynomial number of times.

a & w0 nhoRE

Return the answer to.

This kind of reduction is very useful for reducing searchigpeos to decision problems. For
example, if we have an algorithffis 47» that tells us if some boolean formula has a satisfying
assignment, we can determine what that satisfying assignmeusing this kind of reduction.
(How?)

Let's examine one last problem that demonstrates this Kimeduction.

Problem: Suppose | have an algorithfy _y - that, given a graply = (V, E') and a parameté,
returns whether or not the graph has aertex cover. How can find &node vertex cover of the
graphG?
Solution: First askT}_y ¢~ if there is ak vertex cover forGG. If it says no, then n@ vertex cover
exists forGs, so give up. Otherwise, pick some vertexc V', and remover and all edges incident
tox fromG. AskT}._y - if this new graph(z —z, has & — 1 vertex cover. If so, then we know that
x can be in & vertex cover of the original grapfi, so we addr to our vertex cover and recurse
this whole process o0& — x andk — 1. If Ty_y¢2(G — z, k — 1) returns “no,” then we know that
x cannot be in & vertex cover of. By definition of vertex cover, we therefore know that some
neighbor ofr must be in thek-vertex cover of7. Consequently we can remoyez N(x), one of
2’s neighbors fron(z, includey in our vertex cover, and recurse this process:0n y andk — 1.
After k iterations we will have found vertices that covet:, so assuming thdf,_, <> runs
in polynomial time, then this entire process runs in polyrarime. Thus we have reduced the
problem of finding & vertex cover of a graph to the problem of deciding if eertex cover exists
for that graph.

