
TB Schardl 6.046J/18.410J
October 23, 2009 Recitation 6

Dynamic Programing

Problem: A sneaky gambler visits a casino to play a game involving a die. The casino uses only a
fair die, but the gambler brings with him an identical looking loaded die and can swap which die
he uses without anyone without anyone noticing. He may therefore swap back and forth between
die in order to hide his usage of the loaded die. The only discernable difference is the apparent
probability of the values he rolls over lengths of time.

The probability the gambler switches die between rolls in either direction is 0.05. The proba-
bility of getting each value from the fair and loaded dice aregiven here:

Fair Loaded
1 1/6 1/10
2 1/6 1/10
3 1/6 1/10
4 1/6 1/10
5 1/6 1/10
6 1/6 1/2

Given a sequence of rolls the gambler makes, we want to know atwhich points he used the
loaded die. Obviously we can’t determine this for certain, but we can determine the most likely
sequence of die swaps the gambler used to get the given sequence of rolls. How might we do this?

Viterbi Algorithm

Think of this problem in terms of a state diagram. Each die is astate, with some transition proba-
bility to the other state, and each state has a probability ofoutputting each value. We can associate
each output in our sequence with being in some state in our state diagram at that time. Our se-
quence of outputs is thus a result of transitioning from someprevious state in our diagram to some
states, and then emitting a value froms, where the transitions and emissions occur with the given
probabilities. If we associate each output in the sequence with the act of emitting that output from
some state at that time, then our goal is to find the traversal through this state diagram over time
that maximizes the probability of generating the observed output sequence.

To generalize and formalize, we want to find a pathπ∗ that maximizes the total joint probability:

P (x, π) = a0π1
∗

∏

i

eπi
(xi) × aπiπi+1

wherea0π1
is the probability of starting in stateπ1, eπi

(xi) is the probability of outputtingxi in
stateπi, andaπiπi+1

is the probability of transitioning from stateπi to stateπi+1.
How do we solve this with Dynamic Programming? Notice that ifthe most probable traversal

through the state diagram uses statek at that timei, it must also use an optimal traversal through
the states to generate the output and get to statek at timei. (The proof for this is a cut-and-paste
argument.) The probability of this traversal for the subsequence is the same as the probability for
a path through the states given above.



2 Recitation 6

x1 x2 … xi-1 xi … xn

1

2

…

k

Figure 1: Model of the computation for the Viterbi algorithm. The output sequence is placed
along the horizontal axis, while the states are aligned along the vertical axis. The dependencies for
computing the probability of being in some state at timei from the probabilities of being in each
state at timei − 1 are shown.

Therefore for alli we can compute theVk(i), the probability that we were in statek at timei

given the output sequencex1x2...xi by computingVk(i) = maxj(ajkVj(i − 1)) ∗ ek(xi), wherej

is a possible state of the state machine at timei − 1. By applying this formula for all statesk and
increasing timesi we can model the computation as progressing through the chart in figure 1.

From this strategy for computing these probabilities, we get most of a dynamic programming
algorithm to compute the value we want. We first initialize the entry in figure 1 for each state at
time 1 to be the probability of starting in that state times the probability thatx1 was emitted from
that state. We compute the rest of the values in this chart using the above recursive formula. To
terminate we choose the maximum value over the statesk of Vk(n), and follow the pointers in the
chart backwards to extract the actual path. (Note that in practice these probabilities become very
small after only a few iterations, so the log of the probabilities is used instead.)

The space consumption of this dynamic program isO(Kn) for K states andn outputs, as seen
from the chart. Each entry in the chart requires looking at all K entries in the previous column of
the chart, so the total runtime of this algorithm isO(K2n).

This algorithm is very useful for answering these sorts of queries for Hidden Markov Models.
A Hidden Markov Model (HMM) models a process whose workings are unknown to us as a state
machine with transition and emission probabilities. Once an HMM is trained we can use the Viterbi
algorithm to extract the most likely path through the statesof the HMM that generated some given
output sequence, and from these states make a prediction concerning what happened to generate
that output sequence.


