TB Schardl 6.046J/18.410J
October 23, 2009 Recitation 6

Dynamic Programing

Problem: A sneaky gambler visits a casino to play a game involvingea @ihe casino uses only a
fair die, but the gambler brings with him an identical loakilmaded die and can swap which die
he uses without anyone without anyone noticing. He may thereswap back and forth between
die in order to hide his usage of the loaded die. The only distse difference is the apparent
probability of the values he rolls over lengths of time.

The probability the gambler switches die between rolls thezidirection is 0.05. The proba-
bility of getting each value from the fair and loaded dice giken here:

Fair | Loaded
1| 1/6 | 1/10
2| 1/6 | 1/10
3/ 1/6 | 1/10
41 1/6 1/10
5] 1/6 | 1/10
6| 1/6 1/2

Given a sequence of rolls the gambler makes, we want to knavhih points he used the
loaded die. Obviously we can’t determine this for certau, Wwe can determine the most likely
sequence of die swaps the gambler used to get the given seqoiermlls. How might we do this?

Viterbi Algorithm

Think of this problem in terms of a state diagram. Each diedtage, with some transition proba-
bility to the other state, and each state has a probabilipuggutting each value. We can associate
each output in our sequence with being in some state in otg dtagram at that time. Our se-
guence of outputs is thus a result of transitioning from spnegious state in our diagram to some
states, and then emitting a value from) where the transitions and emissions occur with the given
probabilities. If we associate each output in the sequerittetiae act of emitting that output from
some state at that time, then our goal is to find the traveinsaligh this state diagram over time
that maximizes the probability of generating the obseruggut sequence.

To generalize and formalize, we want to find a pathhat maximizes the total joint probability:

P(z,7) = agr, * H r, (T3) X Ay,
whereay,, is the probability of starting in state,, e,,(z;) is the probability of outputting:; in
stater;, anda,,,, IS the probability of transitioning from state to stater; ;.

How do we solve this with Dynamic Programming? Notice thahé& most probable traversal
through the state diagram uses stat that times, it must also use an optimal traversal through
the states to generate the output and get to &tateimei. (The proof for this is a cut-and-paste
argument.) The probability of this traversal for the sulhssgre is the same as the probability for
a path through the states given above.

1 \
2
7
) 7
X; X, " X1 X " Xy

Figure 1. Model of the computation for the Viterbi algorithm. The put sequence is placed
along the horizontal axis, while the states are alignedgatba vertical axis. The dependencies for
computing the probability of being in some state at tiifieom the probabilities of being in each
state at time — 1 are shown.

Therefore for alli we can compute the} (i), the probability that we were in stateat time:
given the output sequenagz,...z; by computingV (i) = max;(a;xV;(i — 1)) * ex(z;), wherej
is a possible state of the state machine at timel. By applying this formula for all statelsand
increasing timeg we can model the computation as progressing through theé iohggure 1.

From this strategy for computing these probabilities, wengest of a dynamic programming
algorithm to compute the value we want. We first initialize #ntry in figure 1 for each state at
time 1 to be the probability of starting in that state times piobability thatr; was emitted from
that state. We compute the rest of the values in this chamgjubkie above recursive formula. To
terminate we choose the maximum value over the statdd/;.(n), and follow the pointers in the
chart backwards to extract the actual path. (Note that intethese probabilities become very
small after only a few iterations, so the log of the probdieti is used instead.)

The space consumption of this dynamic progra® (&'n) for K states ana outputs, as seen
from the chart. Each entry in the chart requires looking latkaéntries in the previous column of
the chart, so the total runtime of this algorithnG$K?n).

This algorithm is very useful for answering these sorts arags for Hidden Markov Models.
A Hidden Markov Model (HMM) models a process whose workings @énknown to us as a state
machine with transition and emission probabilities. OntelM is trained we can use the Viterbi
algorithm to extract the most likely path through the statethe HMM that generated some given
output sequence, and from these states make a predictieercamng what happened to generate
that output sequence.

