TB Schardl 6.046J/18.410J
October 02, 2009 Recitation 4

Augmentation

The idea of augmentation is to add information to parts ohadsdrd data structure to allow it to
perform more complex tasks. You've practiced this concéptdy on Problem set 2, in order to
allow skip lists to suppor®(log n) time RANK and SELECT methods. We’'ll look at a similar prob-
lem of creating “order statistic trees” by augmenting 2-8ets to support RNK and SELECT.
(The same methodology works for augmenting BSTS.)

Order Statistic Trees

Problem: Augment an ordinary 2-3-4 tree to support efficiemNR and SELECT-RANK methods
without hurting the asymptotic performance of the normed¢toperations.

Idea: In each node, store the rank of the node in its subtree. Amplaorder statistic tree is
shown in Fiaure 1.

30

I

10| 17 3714577

Figure 1. An example order statistic tree. The original values stonethe tree are shown in the
top box in a darker gray, while their associated rank valueskaown in the bottom box in a lighter

gray.

RANK, SELECT:

We will examine &LECT, noting that the procedure forARK is similar. Suppose we are
searching for theéth order statistic. Starting from the root of the tree, lobkhe rank associated
with the current nodey. If n.rank = i, returnn. If n.rank > i, recursively &LECT theith order
statistic from the left child of.. Otherwisen.rank < i, so recursively select the — n.rank)th
order statistic from the right child of.



2 Recitation 4

INSERT.

The INSERTmMethod for order statistic trees augments the normal insettiod for 2-3-4 trees.
When an element is inserted into a subtree rooted at some node, all elemetie tright of the
subtree into whiche is inserted must increment their rank values by 1. Whes inserted into
a leaf, all elements to the right afs position must increment their rank values by 1. Note that
this requires a constant number of increments per leveksetsxl during the insert process, so the
runtime of this operation is stilD(lg n)

After z is inserted, promotions may occur to maintain the struatéitbe 2-3-4 tree. Whenever
an element, with rankr is promoted, first all elements to the rightofn its former level should
have their ranks decrementedhythen the rank ofi should be incremented by the former largest
rank in its new level. This requires a constant number of naakipulations per promotion, of
which O(1gn) may occur, SoNSERTstill takesO(lg n) time.

Theorem Suppose we are augmenting a balanced searcl tigfen nodes with a valug on
each node. If the value of for each node: depends on only the information in nodesz.le ft,
andz.right, possibly includinge.left. f andz.right. f, then we can maintain the valuesoin all
nodes ofl’ during insertion and deletion without asymptotically affeg theO(1gn) performance
of these operations. (CLRS, 346)

Range Trees

Problem: We haven points ind dimensions. For example, we may have a databaseretords
with d numeric fields, or we may have a collectionrofestaurants withl associated values for
each restaurant (longitude, latitude, food, decor, serwost, etc.) We want to make queries
efficiently about these points within an axis-aligned bag, ¢how many restaurants are within
price range $:, p»] and between intersectiorig andi, on Main St.” Our goal is to preprocess
these points into a static data structure to support fasiepie

We will develop an example range tree using the points anocaged data shown in Figure
2. Each of these points has a label - a through f - and two assocvalues - X and Y. To track
these points in the range tree, each point is associatedavdtitor. Each point in the range tree
is colored with the appropriate color and labeled with theehsion on which that range tree is
keyed.

1D Range Trees

First consider the problem of finding the points within a rardong 1 dimension. For example
consider finding all points in Figure 2 with X values in the garfi, 41].

Idea: Use a balanced search tree, such as a red-black tree. Mes Istore the points, while
internal nodes store copies of the points such that eachnaiteode stores the maximum value in
its left subtree. An example 1D range tree is the X-tree shoviAigure 2.
RANGE-QUERY([x1, x3]): Search forz, then search fogy. Remove the prefixes in common with
both search results, then return the subtrees “in between.”



Recitation 4 3

Points | a b c d e f g h i i
X 26 | 35 | 12 | 1 8 |17 | 41| 6 | 14 | 42
Y 7 3 /44|21 119 | 2830|134 )25 2

X-tree:
Range: [7, 41]

|
|
1 | 42
| o
|
6 8 | 17| |26 |} \
[ | | \
T I |l 2
| | | \
I [ | \
| [ I \
| | | \
Y-trees: Y ! ' J
Range: [5,29] | 19 30
I— U
25| 44 3

I

Figure 2: An example 2D range tree. The points being searched arernsinaive chart at the top,
with the columns colored by each points associated coldris(@olor is not stored in the actual
tree, but is a visual guide for the reader to associate vafudse trees below with the original
points.) The X-tree for these points is shown below this Ghelong with an indication of the
X-range searched for and found in the tree. The Y-trees adedowith each subtree found in the
X-tree search is shown at the bottom, with dashed arrowsatidig the association of each Y-tree

to a root of a subtree in the X-tree, and the results of thengeasearch on each of these Y-trees
indicated.



4 Recitation 4

In Figure 2 the search paths for finding 7 and 41 are shown byehethick black arrows.
The subtrees in between can be found as right branches tawvéal during the search for 7 and
left branches not followed during the search for 41; thesadies are indicated by the moderately
thick arrows in the graph. For our purposes we only care afwding the roots of each subtree in
between our range values.

Query Time: It take®)(lgn) to perform the search in the tree for each end of the givenerang
this follows from the runtime of theEARCH operation on balanced search trees. While performing
this search the roots of the subtrees known to be “in betwesmbe stored, so all of these subtrees
can be found irO(lgn) time. Finally removing the prefixes in common to both seasaten be
done by retracing the nodes examined along both search gathsliminating all but the last of
the common nodes. Each search pat® (& n) in length, so this step také&3(lgn) time as well.
Therefore the query to report all of the subtrees tak@gn) time.

2D Range Trees

Now consider the problem of finding points within two 1-dinrsemal ranges. For examply con-
sider finding all points in Figure 2 with X values in the rariget1] and Y values in the range [5,
29].

ldea: Use a 1D range tree to find subtrees representing pointhingte = [z, z5]. With each
noden in the z-tree, store a secondary 1D range tree containing all poirtise xz-tree subtree
rooted at keyed ory = [y1, y2|. Note that all of thesg-trees are generated during preprocessing,
and thus are available during any query.

A portion of an example 2D range tree is shown in Figure 2. T of each subtree found
in the appropriate X range is tied to another 1D range treedgshed arrow. There is actually 1
Y-tree associated with each node in the X-tree, but the oOtttezes are not shown. Each Y-tree
contains the same set of points as are present in the X-tb#eesuo which they are associated.
These points are keyed in the Y-tree by their Y-value.

To query, first find all subtrees in primagytree, then recursively query eagttree associated with
an z-tree subtree found. In Figure 2 the Y-tree associated vat esubtree root found in the X
range query is queried by the Y range, yeilding the indica¢sdilts.

Query Time: The initial query on the-tree takesD(Ign) time, and return®(lgn) subtree
roots. Each of these subtree roots is associated wjttree, each of which is queried (lgn)
time. Therefore the total query time for a 2D range tre@ (& n + (Ign)(Ign)) = O((1gn)?).

Space: Each elemeatbelongs tdg n subtrees in the-tree, and therefore will appearign
y-trees. Since there areelements, our total space consumptio®is 1gn).

dD Range Trees

To add a third dimension,, augment each subtree in eagctree with another range tree keyed on
z. Repeat this process of augmenting all subtrees in eachdrebd previous dimension with a
tree keyed on the next dimension until @limensions are covered.



Recitation 4 5

Query Time: By generalizing the reasoning for the query tiore2D range trees, we find that
the query time for @D range tree i£)((1gn)?).

Space: By generalizing the reasoning for the space consomipti a 2D range tree, the space
consumption for @D range tree i©) (n(lgn)?1).



