
TB Schardl 6.046J/18.410J
October 02, 2009 Recitation 4

Augmentation

The idea of augmentation is to add information to parts of a standard data structure to allow it to
perform more complex tasks. You’ve practiced this concept already on Problem set 2, in order to
allow skip lists to supportO(log n) time RANK and SELECT methods. We’ll look at a similar prob-
lem of creating “order statistic trees” by augmenting 2-3-4trees to support RANK and SELECT.
(The same methodology works for augmenting BSTs.)

Order Statistic Trees

Problem: Augment an ordinary 2-3-4 tree to support efficient RANK and SELECT-RANK methods
without hurting the asymptotic performance of the normal tree operations.

Idea: In each node, store the rank of the node in its subtree. An example order statistic tree is
shown in Figure 1.

30

10 17 37 45

3 7 20 2414 33 42 50

1 2 1 1 2 1 1 1

3 5 2 4

8

77

84

1

6

Figure 1: An example order statistic tree. The original values stored in the tree are shown in the
top box in a darker gray, while their associated rank values are shown in the bottom box in a lighter
gray.

RANK , SELECT:
We will examine SELECT, noting that the procedure for RANK is similar. Suppose we are

searching for theith order statistic. Starting from the root of the tree, look at the rank associated
with the current node,n. If n.rank = i, returnn. If n.rank > i, recursively SELECT theith order
statistic from the left child ofn. Otherwisen.rank < i, so recursively select the(i − n.rank)th
order statistic from the right child ofn.



2 Recitation 4

INSERT:
The INSERTmethod for order statistic trees augments the normal insertmethod for 2-3-4 trees.

When an elementx is inserted into a subtree rooted at some node, all elements to the right of the
subtree into whichx is inserted must increment their rank values by 1. Whenx is inserted into
a leaf, all elements to the right ofx’s position must increment their rank values by 1. Note that
this requires a constant number of increments per level descended during the insert process, so the
runtime of this operation is stillO(lg n)

After x is inserted, promotions may occur to maintain the structureof the 2-3-4 tree. Whenever
an elementn with rankr is promoted, first all elements to the right ofn in its former level should
have their ranks decremented byr, then the rank ofn should be incremented by the former largest
rank in its new level. This requires a constant number of rankmanipulations per promotion, of
whichO(lg n) may occur, so INSERTstill takesO(lg n) time.

Theorem Suppose we are augmenting a balanced search treeT of n nodes with a valuef on
each node. If the value off for each nodex depends on only the information in nodesx, x.left,
andx.right, possibly includingx.left.f andx.right.f , then we can maintain the values off in all
nodes ofT during insertion and deletion without asymptotically affecting theO(lg n) performance
of these operations. (CLRS, 346)

Range Trees

Problem: We haven points ind dimensions. For example, we may have a database ofn records
with d numeric fields, or we may have a collection ofn restaurants withd associated values for
each restaurant (longitude, latitude, food, decor, service, cost, etc.) We want to make queries
efficiently about these points within an axis-aligned box, e.g. “how many restaurants are within
price range [p1, p2] and between intersectionsi1 and i2 on Main St.” Our goal is to preprocess
these points into a static data structure to support fast queries.

We will develop an example range tree using the points and associated data shown in Figure
2. Each of these points has a label - a through f - and two associated values - X and Y. To track
these points in the range tree, each point is associated witha color. Each point in the range tree
is colored with the appropriate color and labeled with the dimension on which that range tree is
keyed.

1D Range Trees

First consider the problem of finding the points within a range along 1 dimension. For example
consider finding all points in Figure 2 with X values in the range [7, 41].
Idea: Use a balanced search tree, such as a red-black tree. The leaves store the points, while
internal nodes store copies of the points such that each internal node stores the maximum value in
its left subtree. An example 1D range tree is the X-tree shownin Figure 2.
RANGE-QUERY([x1, x2]): Search forx, then search fory. Remove the prefixes in common with
both search results, then return the subtrees “in between.”



Recitation 4 3

12 141

6 17 268

35 41 426

1 12 26 41

17

8 35

14

Points

X

Y

a b c d e f g h i j

26 35 12 1 8 17 41 6 14 42

28192144 30 34 25 237

Range: [7, 41]
X-tree:

19

4425

25

287

3 7

303
Y-trees:
Range: [5, 29]

Figure 2: An example 2D range tree. The points being searched are shown in the chart at the top,
with the columns colored by each points associated color. (This color is not stored in the actual
tree, but is a visual guide for the reader to associate valuesin the trees below with the original
points.) The X-tree for these points is shown below this chart, along with an indication of the
X-range searched for and found in the tree. The Y-trees associated with each subtree found in the
X-tree search is shown at the bottom, with dashed arrows indicating the association of each Y-tree
to a root of a subtree in the X-tree, and the results of the Y-range search on each of these Y-trees
indicated.



4 Recitation 4

In Figure 2 the search paths for finding 7 and 41 are shown by thevery thick black arrows.
The subtrees in between can be found as right branches not followed during the search for 7 and
left branches not followed during the search for 41; these branches are indicated by the moderately
thick arrows in the graph. For our purposes we only care aboutfinding the roots of each subtree in
between our range values.

Query Time: It takesO(lg n) to perform the search in the tree for each end of the given range;
this follows from the runtime of the SEARCH operation on balanced search trees. While performing
this search the roots of the subtrees known to be “in between”can be stored, so all of these subtrees
can be found inO(lg n) time. Finally removing the prefixes in common to both searches can be
done by retracing the nodes examined along both search pathsand eliminating all but the last of
the common nodes. Each search path isO(lg n) in length, so this step takesO(lg n) time as well.
Therefore the query to report all of the subtrees takesO(lg n) time.

2D Range Trees

Now consider the problem of finding points within two 1-dimensional ranges. For examply con-
sider finding all points in Figure 2 with X values in the range[7, 41] and Y values in the range [5,
29].

Idea: Use a 1D range tree to find subtrees representing points matching x = [x1, x2]. With each
noden in the x-tree, store a secondary 1D range tree containing all pointsin the x-tree subtree
rooted atn keyed ony = [y1, y2]. Note that all of thesey-trees are generated during preprocessing,
and thus are available during any query.

A portion of an example 2D range tree is shown in Figure 2. The root of each subtree found
in the appropriate X range is tied to another 1D range tree by adashed arrow. There is actually 1
Y-tree associated with each node in the X-tree, but the otherY-trees are not shown. Each Y-tree
contains the same set of points as are present in the X-tree subtree to which they are associated.
These points are keyed in the Y-tree by their Y-value.
To query, first find all subtrees in primaryx-tree, then recursively query eachy-tree associated with
anx-tree subtree found. In Figure 2 the Y-tree associated with each subtree root found in the X
range query is queried by the Y range, yeilding the indicatedresults.

Query Time: The initial query on thex-tree takesO(lg n) time, and returnsO(lg n) subtree
roots. Each of these subtree roots is associated with ay-tree, each of which is queried inO(lg n)
time. Therefore the total query time for a 2D range tree isO(lg n + (lg n)(lg n)) = O((lg n)2).

Space: Each elemente belongs tolg n subtrees in thex-tree, and therefore will appear inlg n

y-trees. Since there aren elements, our total space consumption isO(n lg n).

dD Range Trees

To add a third dimension,z, augment each subtree in eachy-tree with another range tree keyed on
z. Repeat this process of augmenting all subtrees in each tree for the previous dimension with a
tree keyed on the next dimension until alld dimensions are covered.



Recitation 4 5

Query Time: By generalizing the reasoning for the query time for 2D range trees, we find that
the query time for adD range tree isO((lg n)d).

Space: By generalizing the reasoning for the space consumption for a 2D range tree, the space
consumption for adD range tree isO(n(lg n)d−1).


