
TB Schardl 6.046J/18.410J
September 25, 2009 Recitation 3

Deterministic Select

Problem: Given an unsorted set ofn elements, find theith order statistic of that set (theith
smallest element in the set.)

The obvious way to do this takesO(n log n) time. There is an efficient randomized way to do
this in expectedO(n) time, which can be found in CLRS. We will see a way to do this determinis-
tically in O(n) time. (This algorithm is due to Blum, Floyd, Pratt, Rivest, andTarjan.)

Note: By convention, when we discuss the median of a set with aneven number of elements,
we mean the “lower median” in that set. In other words, in a setof n elements wheren is even, we
take the median of that set to be the⌊(n + 1)/2⌋th element.

SELECT(A, i): wheren = |A|

1. Divide then elements ofA into ⌊n

5
⌋ groups of 5 elements each. Additional elements may be

placed in their own group of sizen mod 5.

2. Find the median of each the groups. (Insertion-sort the elements in each group and then pick
the median in each sorted list.)

3. Recursively SELECT the medianx of the medians found in step 2.

4. Partition the input array around the median-of-mediansx. Definek = rank(x): k is one
more than the number of elements on the low side of the partition, sox is thekth smallest
element and there aren − k elements on the high side of the partition.

5. If i = k, then returnx. If i < k, recursively SELECT the ith smallest element on the low
side. Otherwisei > k, so recursively SELECT the (i − k)th smallest element on the high
side.

Claim: SELECT finds theith order statistic ofA in O(n) worst-case time.
Proof.

We must evaluate the recurrenceT (n) for SELECT. Steps 1, 2, and 4 are non-recursive steps
that takeO(n) time. Step 3 is a recursive call over⌈n

5
⌉ elements - the median element from each

group - which takesT
(⌈

n

5

⌉)

time.
To evaluate the runtime of the recursive call in step 5, WLOG assume we must recurse on the

elements larger than the median-of-medians,x. If we conceptualize the distribution of elements
after step 3 of SELECT in the manner shown in Figure 1, we notice that the elements within the
purple box are all known to be smaller thanx. In general, if we have⌈n

5
⌉ groups, then we have

⌊1

2
⌈n

5
⌉⌋ groups whose median is at mostx, and therefore⌊1

2
⌈n

5
⌉⌋ − 1 groups whose median is less

thanx. Each of these groups contributes 3 elements that are less thanx, so the number of elements
less thanx is at least

2 Recitation 3

Figure 1: Conceptual layout of elements after step 3 of SELECT. Then elements are represented
by circles, and each group of 5 is sorted in a column. The median of each group is shown in yellow,
while the median of those medians,x, is shown in green. Arrows point from smaller elements to
larger elements. The purple box highlights a subset of the elements known to be smaller thanx.

3

(⌊

1

2

⌈n

5

⌉

⌋

− 1

)

≥ 3
(⌊ n

10

⌋

− 1
)

≥ 3
(n

10
− 2

)

=
3n

10
− 6

Therefore there are at most7n

10
+ 6 elements greater thanx, so the recursive call in step 5 takes

at mostT (7n/10 + 6) time. The total runtime of SELECT is therefore

T (n) ≤ T (⌈n/5⌉) + T (7n/10 + 6) + O(n).

We will use the substitution method to verify that this procedure runs inO(n) time. To do this
we will replace theO(n) term in our recurrence with a representative function,an for sufficiently
large a. We will also assume that for alln < 140 this method requiresO(1) time. To perform the
substitution, assumeT (k) ≤ c ∗ k for some sufficiently largec and allk > 0. Substituting this
inductive hypothesis into our recurrence gives:

T (n) ≤ c⌈n/5⌉ + c(7n/10 + 6) + an

≤ cn/5 + c + 7n/10 + 6c + an

= 9cn/10 + 7c + an

= cn + (−cn/10 + 7c + an)

Recitation 3 3

This is at mostcn if −cn/10 + 7c + an ≤ 0, which holds as long asc ≥ 10a(n/(n − 70)).
Because we assume that forn < 140 this method runs in constant time, we find thatn/(n−70) ≤ 2,
so choosing ac ≥ 20a will satisfy this inequality. Therefore SELECT runs inO(n) time.

