
TB Schardl 6.046J/18.410J
September 18, 2009 Recitation 2

Matrix Multiplication
Problem: Given two n× n matrices A and B, find the n× n matrix C such that C = A ∗B

The naive algorithm for this task runs in Θ(n3) time. We would like to improve on this runtime.
Perhaps we could use a

Divide and Conquer Algorithm

Idea: Divide n× n matrix into 2× 2 matrix of n/2× n/2 submatrices.

C = A ∗B⇒
[
r s
t u

]
=

[
a b
c d

]
∗
[
e f
g h

]
Therefore:

r = ae + bg

s = af + bh

t = ce + dg

u = cf + dh

So we have 8 recursive multiplies and 4 additions.

Running Time: T (n) = Θ(n3)

But we can improve this!

Strassen’s Algorithm

Define:
p1 = a ∗ (f − h)
p2 = (a + b) ∗ h
p3 = (c + d) ∗ e
p4 = d ∗ (g − e)
p5 = (a + d) ∗ (e + h)
p6 = (b− d) ∗ (g − h)
p7 = (a− c) ∗ (e + f)

In terms of p1 through p7:
r = p5 + p4 − p2 + p6

s = p1 + p2

t = p3 + p4

u = p5 + p1 − p3 − p7

With these definitions, Strassen’s Matrix Multiply Algorithm becomes:



2 Recitation 2

1 Divide: Partition A and B into submatrices; add and subtract to form terms.
2 Conquer: 7 recursive multiplications.
3 Combine: Add and subtract terms to form C.

Running Time: T (n) = Θ(nlg 7) = O(n2.81)

Matrix Product Checking
Your friend gives you a program binary that multiplies matrices...or so he claims. You want to
verify that your friend’s program multiplies matrices correctly, but you don’t want to source dive
the decompiled binary or spend all the time needed to multiply the two matrices yourself. More
formally:

Problem: Given three real n× n matrices, A, B, and C, does C = A ∗B?

We can use the following randomized algorithm (due to Freivalds) to solve this in O(n2) time:

MATRIX-PRODUCT-CHECK(A,B,C)

1 Pick a vector r ∈ {0, 1}n uniformly at random.
2 if A(Br) = Cr
3 then Output “Yes”
4 else Output “No”

Claim: If AB = C then this algorithm will always output “Yes,” and if AB 6= C then
Pr[MATRIX-PRODUCT-CHECK(A,B,C) outputs “Yes”] ≤ 1

2
.

Proof.
The first part of this claim follows from associativity of matrix multiplication. To prove the

second part, start by conceptualizing a matrix D = AB−C. Because we assume that AB 6= C,
D 6= 0. Therefore there must exist some element in D that is non-zero; call this non-zero element
dij .

We will now further assume that this algorithm outputs “Yes,” despite the fact that AB 6= C.
(We want to examine what values of r could cause this algorithm to mistakenly output “Yes,” and
deduce that the probability of this r occurring is small.) Examine the ith entry in the product Dr.
For Dr to be 0 (which corresponds to our algorithm outputting “Yes”) the ith entry of Dr must be
0. Therefore
{The ith entry of Dr} =

∑
k

dikrk = 0.

Since we assume that dij 6= 0, this sum is 0 iff
rj = −(

∑
k 6=j

dikrk)/dij

Therefore, for a given selection of the other values in r, there is exactly one value of rj that will
make this sum 0. However, we select randomly from two possible values for rj , so the probability
that we select the correct one is ≤ 1

2
. It follows that the Pr[Dr = 0] ≤ 1

2
as claimed.


