
TB Schardl 6.046J/18.410J
September 11, 2009 Recitation 1

Asymptotic Notation
We will use aysmptotic notation frequently in this class in describing the performance charac-
teristics (runtime, space consumption) of the algorithms we explore. The set definitions for this
notation are given below

O(g(n)) = {f(n) : there exist positive constants c and n0 such that
for all n > n0, 0 ≤ f(n) ≤ cg(n)}

Ω(g(n)) = {f(n) : there exist positive constants c and n0 such that
for all n > n0, 0 ≤ cg(n) ≤ f(n)}

Θ(g(n)) = {f(n) : there exist positive constants n0, c1, c2 such that
for all n > n0, 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)}

o(g(n)) = {f(n) : for all c > 0, there exists a positive n0 such that
for all n > n0, 0 ≤ f(n) ≤ cg(n)}

ω(g(n)) = {f(n) : for all c > 0, there exists a positive n0 such that
for all n > n0, 0 ≤ cg(n) ≤ f(n)}

Note: These definitions require that every member of f(n) is asymptotically nonnegative:
f(n) ≥ 0 whenever n is sufficiently large. Therefore g(n) must also by asymptotically non-
negative, or else no f(n) fulfills the definition. In general we will assume that any function used
in this notation is asymptotically nonnegative.

Using these set definitions we will use the notation f(n) = O(g(n)) to indicate set member-
ship: f(n) ∈ O(g(n)). We will also use asymptotic notation in equations; for example, you may
see a recurrence equation such as T (n) = T (n/2) + O(n2). In this case O(n2) refers to some
anonymous function in the set O(n2).

Recurrences
Recall the Merge Sort Algorithm: Given an array of n elements we wish to sort, we divide this list
in half, recursively Merge Sort each half of the list, then merge the two sorted lists.

This algorithm is a recursive algorithm, and its runtime can be represented with the following
recurrence formula:

T (n) = 2T (n/2) + n

We would like a closed form for the runtime of this algorithm, so we’re going to have to solve
this recurrence. You should already be familiar with two ways to do this: the substitution method,



2 Recitation 1

and the recursion tree method. Today I’m going to introduce a very useful method for solving
recurrences, called the Master Method.

The Master Method
The Master Method is a convenient method for solving recurrences of the form T (n) = aT (n/b)+
f(n). Note that the form of the Master Method given below is more general than the form in CLRS;
the additional lg n factor comes from the height of the recurrsion tree when both nlogb a and f(n)
approximately match.

Let a ≥ 1 and b > 1 be constants, let f(n) be a function, and let T (n) be defined
on the nonnegative integers by the recurrence T (n) = aT (n/b) + f(n), where n/b
corresponds to either bn/bc or dn/be. Then

1. If f(n) = O(nlogb a−ε) for some constant ε > 0, then T (n) = Θ(nlogb a).

2. If f(n) = Θ(nlogb a lgk n) for some constant k ≥ 0, then T (n) = Θ(nlogb a lgk+1 n).

3. If f(n) = Ω(nlogb a+ε) for some constant ε > 0, and af(n/b) ≤ cf(n) for some
constant c < 1 and all sufficiently large n, then T (n) = Θ(f(n)).

Exercise: Use the master method to solve the recurrence formula for Merge Sort.

Problems
Evaluate the following recurrences.

1. T (n) = 4T (n/2) + n3

Solution: Case 3; T (n) = Θ(n3)

2. T (n) = 9T (n/3) + n2 lg n

Solution: Case 2; T (n) = Θ(n2 lg2 n)

3. T (n) = 5T (n/2) + n2 lg n

Solution: Case 1; T (n) = Θ(nlog25)

4. T (n) = 8T ((n−
√
n)/4) + n2

Solution: Ignore low-order term to get T (n) = 8T (n/4) + n2. Case 3; T (n) = Θ(n2)

5. T (n) = 2T (
√
n) + lg lg n

Solution: Do a change of variables. Let m = lg n. Now

T (2m) = 2T (2m/2) + lgm.

Define S(m) = T (2m). Now



Recitation 1 3

S(m) = 2S(m/2) + lgm.

Applying the Master Method we get Case 1, so S(m) = Θ(m). Undoing our previous
transformations we find that T (2m) = Θ(m) and therefore T (n) = Θ(lg n).


